Entire solutions to 4 dimensional Ginzburg–Landau equations and codimension 2 minimal submanifolds

Marco Badran, Manuel del Pino

Research output: Contribution to journalArticlepeer-review

2 Citations (SciVal)

Abstract

We consider the magnetic Ginzburg–Landau equations in R4 {−ε2(∇−iA)2u=[Formula presented](1−|u|2)u,ε2ddA=〈(∇−iA)u,iu〉, formally corresponding to the Euler–Lagrange equations for the energy functional E(u,A)=[Formula presented]∫R4|(∇−iA)u|22|dA|2+[Formula presented](1−|u|2)2. Here u:R4→C, A:R4→R4 and d denotes the exterior derivative acting on the one-form dual to A. Given a minimal surface M2 in R3 with finite total curvature and non-degenerate, we construct a solution (uε,Aε) which has a zero set consisting of a smooth surface close to M×{0}⊂R4. Away from the latter surface we have |uε|→1 and uε(x)→[Formula presented],Aε(x)→[Formula presented](−z2ν(y)+z1e4),x=y+z1ν(y)+z2e4 for all sufficiently small z≠0. Here y∈M and ν(y) is a unit normal vector field to M in R3.

Original languageEnglish
Article number109365
JournalAdvances in Mathematics
Volume435
Issue numberPart A
Early online date23 Oct 2023
DOIs
Publication statusPublished - 15 Dec 2023

Keywords

  • Concentration
  • Ginzburg-Landau
  • Higher codimension
  • Minimal surfaces
  • Yang-Mills-Higgs

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Entire solutions to 4 dimensional Ginzburg–Landau equations and codimension 2 minimal submanifolds'. Together they form a unique fingerprint.

Cite this