Energy in the urban water cycle: actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water

J. A. Elías-Maxil, Jan Peter Van Der Hoek, Jan Hofman, Luuk Rietveld

Research output: Contribution to journalArticlepeer-review

79 Citations (SciVal)
345 Downloads (Pure)


In the urban water cycle, water supply, transportation, treatment and disposal are services that consume a considerable amount of energy. This paper reviews and summarizes state of the art measures applied in different parts of the world to reduce the energy consumption related to urban water. Based on a literature review, an overview of the energy balance in the urban water cycle in some regions of the world is presented. The balance shows that water heating is the largest energy expenditure with approximately 80% of the total primary energy demand in the residential sector of the cycle, while the remaining 20% of energy is spent by waterworks on pumping and treatment. Examples of measures to reduce the consumption of energy are presented according to a philosophy of actions in order to achieve energy efficient processes. The emphasis is on technologies and case studies to recover the energy from urban water, as well as some factors that influence the deployment of the technologies. © 2013 Elsevier Ltd.
Original languageEnglish
Pages (from-to)808-820
Number of pages13
JournalRenewable and Sustainable Energy Reviews
Early online date4 Dec 2013
Publication statusPublished - Feb 2014

Bibliographical note

Cited By :2

Export Date: 23 March 2015


Correspondence Address: Elías-Maxil, J.A.; Department of Water Management, Delft University of Technology, 2628CN, Delft, Netherlands; email:

References: Mitchell, V.G., Mein, R.G., McMahon, T.A., Modelling the urban water cycle (2001) Environmental Modelling and Software, 16 (7), pp. 615-629. , DOI 10.1016/S1364-8152(01)00029-9, PII S1364815201000299; Horne, J., Bois, B., Jordan, K., Kricun, A., Newton, J., Pedersen, T., Ensuring a sustainable future: An energy management guidebook for wastewater and water utilities (2008) Global Environment and Technology Foundation, , EPA GEaTF, editor. Washington, D.C.: EPA; Racoviceanu, A.I., Karney, B.W., Kennedy, C.A., Colombo, A.F., Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems (2007) Journal of Infrastructure Systems, 13 (4), pp. 261-270. , DOI 10.1061/(ASCE)1076-0342(2007)13:4(261); Cuddihy, J., Kennedy, C., Byer, P., Energy use in Canada: Environmental impacts and opportunities in relationship to infrastructure systems (2005) Canadian Journal of Civil Engineering, 32 (1), pp. 1-15. , DOI 10.1139/l04-100; McMahon, J.E., Price, S.K., Water and energy interactions (2011) Ann Rev Environ Resour, 36, pp. 163-191; Blokker, E.J.M., Vreeburg, J.H.G., Van Dijk, J.C., Simulating residential water demand with a stochastic end-use model (2010) J Water Resour Plann Manage, 136, pp. 19-26; Hendron, R., Burch, J., Development of standardized domestic hot water event schedules for residential buildings (2008) Laboratory NRE, Editor. Energy Sustainability 2007, p. 11. , NREL California, USA; (2011) Water Heating, , ACEEE American Council for an Energy-Efficient Economy; (2005) Household Water Consumption per Capita in the Netherlands, , NEAA NEAA, CBS, WUR 1980-2001; Geudens, P.J.J.G., Dutch drinking water statistics 2008 (2010) The Water Cycle from Source to Tap. Rijswik: Association of Dutch Water Companies (VEWIN), p. 45; Hofman, J., Hofman-Caris, R., Nederlof, M., Frijns, J., Van Loosdrecht, M., Water and energy as inseparable twins for sustainable solutions (2011) Water Sci Technol, 63, pp. 88-92; Lundie, S., Peters, G.M., Beavis, P.C., Life cycle assessment for sustainable metropolitan water systems planning (2004) Environmental Science and Technology, 38 (13), pp. 3465-3473. , DOI 10.1021/es034206m; Blom, J.J., Telkamp, P., Sukkar, R.G.F.J., Wit, B.G.J.D., Energie in de Waterketen (Energy in the water cycle) (2010) STOWA, p. 95. , editor. Amersfoort, The Netherlands: STOWA; Kennedy, L.A., Tsuchihashi, R., Is water reuse sustainable? Factors affecting its sustainability (2005) Arabian J Sci Eng, 30, pp. 3-15; Liu, H., Ramnarayanan, R., Logan, B.E., Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell (2004) Environmental Science and Technology, 38 (7), pp. 2281-2285. , DOI 10.1021/es034923g; Opportunities for and benefits of combined heat and power at wastewater treatment facilities (2007) Energy and Environmental Analysis, p. 42. , EPA EPA CHaPP, editor. Eastern Research Group; Cheng, C.L., Study of the inter-relationship between water use and energy conservation for a building (2002) Energy Build, 34, pp. 261-266; Plappally, A.K., Lienhard, V., JH. Energy requirements for water production, treatment, end use, reclamation, and disposal (2012) Renewable Sustainable Energy Rev, 16, pp. 4818-4848; Rv, L., Roest, K., Md, G., Hofman, J., De waterketen als energiebron (2010) Nieuwegein: KWR, p. 87. , Institute KWR, editor; Country profile of human development indicators (2011) UNDP, , UNDP. Netherlands editor. New York: United Nations; Frijns, J., Mulder, M., Roorda, J., Op weg naar een klimaatneutrale waterketen (2008) Rijkswaterstraat, p. 71. , editor.: Rijkswaterstraat, KWR, RIONED, STOWA; Greenhouse gas equivalencies calculator (2011) Agency USEP, , EPA editor.: U. S. Environmental Protection Agency; (2011) Performance Ratings Methodology for Incorporating Source Energy Use, p. 17. , ES. USA: EPA/Energy Star; Daigger, G.T., Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery (2009) Water Environ Res, 81, pp. 809-823; Lassaux, S., Renzoni, R., Germain, A., Life cycle assessment of water from the pumping station to the wastewater treatment plant (2007) International Journal of Life Cycle Assessment, 12 (2), pp. 118-126. , DOI 10.1065/lca2005.12.243; Vreuls, H.H.J., Zijlema, P.J., (2009), 1. , The Netherlands: list of fuels and standard CO2 emission factorsGuisasola, A., De Haas, D., Keller, J., Yuan, Z., Methane formation in sewer systems (2008) Water Research, 42 (6-7), pp. 1421-1430. , DOI 10.1016/j.watres.2007.10.014, PII S0043135407006483; De Graaff, M.S., Zandvoort, M., Roest, K., Frijns, J., Janse, T., Loosdrecht, Quantification of Methane MCMv. Oxide Greenhouse Gas Emissions from the Urban Water Cycle N. (2012) IWA World Water Congress, , Busan, Korea: IWA; Law, Y., Jacobsen, G.E., Smith, A.M., Yuan, Z., Lant, P., Fossil organic carbon in wastewater and its fate in treatment plants (2013) Water Res, 47, pp. 5270-5281; Washington, W.M., Knutti, R., Meehl, G.A., Teng, H., Tebaldi, C., Lawrence, D., How much climate change can be avoided by mitigation? (2009) Geophys Res Lett, 36, p. 08703; Sala, L., Serra, M., Towards sustainability in water recycling (2004) Water Science and Technology, 50 (2), pp. 1-8; Lee, M., Tansel, B., Balbin, M., Influence of residential water use efficiency measures on household water demand: A four year longitudinal study (2011) Resour, Conserv Recycl, 56, pp. 1-6; Turner, A., White, S., Beatty, K., Gregory, A., Results of the largest residential demand management program in Australia (2005) Water Science and Technology: Water Supply, 5 (3-4), pp. 249-256; Vairavamoorthy, K., Gorantiwar, S.D., Pathirana, A., Managing urban water supplies in developing countries - Climate change and water scarcity scenarios (2008) Phys Chem Earth, Parts A/B/C, 33, pp. 330-339; Kumar, G., Electricity usage in water distribution networks (2007) IEEE Canada Electrical Power Conference, pp. 97-102. , Montreal, QC; Canada; Going green: Renewable energy options for water utilities (2012) EPA, , EPA editor.: United States Environmental Protection Agency; Balaras, C.A., Droutsa, K., Argiriou, A.A., Asimakopoulos, D.N., Potential for energy conservation in apartment buildings (2000) Energy and Buildings, 31 (2), pp. 143-154. , DOI 10.1016/S0378-7788(99)00028-6; Michopoulos, A., Martinopoulos, G., Papakostas, K., Kyriakis, N., Energy consumption of a residential building: Comparison of conventional and RES-based systems (2009) Int J Sustainable Energy, 28, pp. 19-27; Leidl, C.M., Lubitz, D.W., Comparing domestic water heating technologies (2009) Technol Soc, 31, pp. 244-256; Subramani, A., Badruzzaman, M., Oppenheimer, J., Jacangelo, J.G., Energy minimization strategies and renewable energy utilization for desalination: A review (2011) Water Res, 45, pp. 1907-1920; Mathioulakis, E., Belessiotis, V., Delyannis, E., Desalination by using alternative energy: Review and state-of-the-art (2007) Desalination, 203 (1-3), pp. 346-365. , DOI 10.1016/j.desal.2006.03.531, PII S0011916406012860; Charcosset, C., A review of membrane processes and renewable energies for desalination (2009) Desalination, 245, pp. 214-231; Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marias, B.J., Mayes, A.M., Science and technology for water purification in the coming decades (2008) Nature, 452 (7185), pp. 301-310. , DOI 10.1038/nature06599, PII NATURE06599; Blanco, J., Malato, S., Fernández-Ibañez, P., Alarcón, D., Gernjak, W., Maldonado, M.I., Review of feasible solar energy applications to water processes (2009) Renewable Sustainable Energy Rev, 13, pp. 1437-1445; Frijns, J., Hofman, J., Nederlof, M., The potential of (waste)water as energy carrier (2012) Energy Convers Manage, 65, pp. 357-363; Energie aus Abwasser - Wärme- und Lageenergie (2009) 6th Ed: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall E.V, p. 48. , DWA German Association for Water WaWD, editor; Ramos, H.M., Mello, M., De, P.K., Clean power in water supply systems as a sustainable solution: From planning to practical implementation (2010) Water Sci Technol: Water Supply, 10, pp. 39-49; (2007) Renewables for Heating and Cooling-untapped Potential, , IEA Cedex, France: OECD/IEA; Van Lier, J.B., High-rate anaerobic wastewater treatment: Diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques (2008) Water Science and Technology, 57 (8), pp. 1137-1148. , DOI 10.2166/wst.2008.040; Weiland, P., Biogas production: Current state and perspectives (2010) Appl Microbiol Biotechnol, 85, pp. 849-860; Schwarzenbeck, N., Bomball, E., Pfeiffer, W., Can a wastewater treatment plant be a powerplant? A case study (2008) Water Science and Technology, 57 (10), pp. 1555-1561. , DOI 10.2166/wst.2008.215; Appels, L., Baeyens, J., Degrève, J., Dewil, R., Principles and potential of the anaerobic digestion of waste-activated sludge (2008) Prog Energy Combust Sci, 34, pp. 755-781; Van Der Hoek, J.P., Hofman, J., Van Someren, T.C.R., Integration and innovation of the urban water cycle: The Waternet experience (2011) J Environ Sci Eng, 5, pp. 542-553; Aelterman, P., Rabaey, K., Clauwaert, P., Verstraete, W., Microbial fuel cells for wastewater treatment (2006) Water Science and Technology, 54 (8), pp. 9-15. , DOI 10.2166/wst.2006.702, 5th World Water Congress: Wastewater Treatment Processes; Pham, T.H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., Verstraete, W., Microbial fuel cells in relation to conventional anaerobic digestion technology (2006) Engineering in Life Sciences, 6 (3), pp. 285-292. , DOI 10.1002/elsc.200620121; Logan, B.E., Scaling up microbial fuel cells and other bioelectrochemical systems (2010) Appl Microbiol Biotechnol, 85, pp. 1665-1671; Svardal, K., Kroiss, H., Energy requirements for waste water treatment (2011) Water Sci Technol, 64, pp. 1355-1361; Funamizu, N.A., Iida, M., Sakakura, Y., Takakuwa, T., Reuse of heat energy in wastewater: Implementation examples in Japan (2001) Water Science and Technology, 43 (10), pp. 277-285; Ingildsen, P., Jeppsson, U., Olsson, G., Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback (2002) Water Science and Technology, 45 (4-5), pp. 453-460; Rieger, L., Takács, I., Siegrist, H., Improving nutrient removal while reducing energy use at three Swiss WWTPs using advanced control (2012) Water Environ Res, 84, pp. 170-188; Baroni, P., Bertanza, G., Collivignarelli, C., Zambarda, V., Process improvement and energy saving in a full scale wastewater treatment plant: Air supply regulation by a fuzzy logic system (2006) Environmental Technology, 27 (7), pp. 733-746; Lutz, A.J., Economic opportunities in waste water treatment (2005) Energy Engineering: Journal of the Association of Energy Engineering, 102 (1), pp. 21-39; Brandt, M., Middleton, R., Wheale, G., Schulting, F., Energy efficiency in the water industry, a Global Research Project (2011) Water Pract Technol, p. 6; Narita, K., Maekawa, T., Energy recycling system for urban waste heat (1991) Energy Build, 16, pp. 553-560; Ssm, M., Kornman, J.M., Kerpershoek, A.J., Helm, A.W.C.V.D., Opportunities for public water utilities in the market of energy from water (2010) IWA, , editor. IWA Water and energy. Amsterdam, The Netherlands: IWA; Goorskey, S.Y., Ginny, S., Andrew, (2004) Home Energy Briefs: Water Heating, , Rocky Mountain Institute Colorado, USA; Wanner, O., Warmeruckgewinnung aus Abwasser. Wärmeaustauschverschmutzung: Auswirkungen und Gegenmassnahmen (2009) Schriftenreihe der Eawag, 19, p. 62; Zogg, M., History of heat pumps. Swiss contributions and international milestones (2008) Ninth International IEA Heat Pump Conference, pp. 1-16. , Zürich, Switzerland; Rometsch, L., Kobel, B., Müller, E.A., Wärmegewinnung aus Abwasserkanälen (2004) Entwicklung Eines Anforderungskatalogs für Kläranlagen- Und Kanalnetzbetreiber Gestützt Auf Praxistests Mit Wärmetauschern, p. 243. , Infrastruktur-IKT I.f.U., Institut für Unteridische Infrastruktur Gelsenkirchen; Schmid, F., (2008) Sewage Water: Interesting Heat Source for Heat Pumps and Chillers, pp. 1-12. , 1st ed EnergieSchweiz für Infrastrukturanlagen; Wongsuwan, W., Kumar, S., Neveu, P., Meunier, F., A review of chemical heat pump technology and applications (2001) Applied Thermal Engineering, 21 (15), pp. 1489-1519. , DOI 10.1016/S1359-4311(01)00022-9, PII S1359431101000229; Hughes, M., Refrigerants (1997) HVAC Systems and Components Handbook, p. 6110. , NR Grimm, RC Rosaler, 2nd ed McGraw-Hill; Ajah, A.N., Mesbah, A., Grievink, J., Herder, P.M., Falcao, P.W., Wennekes, S., On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: A comparative simulation-based analysis and evaluation (2008) Energy, 33, pp. 908-929; Hepbasli, A., Kalinci, Y., A review of heat pump water heating systems (2009) Renewable Sustainable Energy Rev, 13, pp. 1211-1229; Holland, F.A., Siqueiros, J., Santoyo, S., Heard, C.L., Santoyo, E.R., (1999) Water Purification Using Heat Pumps, , 1st ed. E & FN SPON New York; Zogg, M., (2008) History of Heat Pumps. Swiss Constributions and International Milestones, p. 114. , Swiss Federal Office of Energy; Chua, K.J., Chou, S.K., Yang, W.M., Advances in heat pump systems: A review (2010) Appl Energy., 87, pp. 3611-3624; Mueller, E.A., (2009) Energie Aus Abwasser Ist Bares Geld Wert!, , Spektrum GebäudeTechnik - SGT: Zeitschrift Spektrum Gebäude Technik SGT; Andersson, O., Aquifer thermal energy storage (ATES (2007) Thermal Energy Storage for Sustainable Energy Consumption, pp. 155-176; Baker, J., New technology and possible advances in energy storage (2008) Energy Policy, 36, pp. 4368-4373; Nielsen, K., Gether, H., Gether, J., (2003) Thermal Energy Storage. A State-of-the-art. Research Program Smart Energy-Efficient Buildings, p. 25. , 1st ed. Norwegian Iniversity of Science and Technology (NTNU), SINTEF Trondheim, Norway; De Graaf, R., Van De Ven, F.H.M., Miltenburg, I.J., Van Ee, B., Van De Winckel, L.C.E., Van Wijk, G., Exploring the technical and economic feasibility of using urban water system as a sustainable energy source (2008) Therm Sci, 12, pp. 35-50; Snijders, A.L., (2005) Aquifer Thermal Energy Storage in the Netherlands, p. 3. , IF Tech International Arnem; Drinkwaterbesluit (Dutch Drinking Water Decree) (2011) Environment) SvIeMMoIa, , IenM editor. Netherlands; De Paepe, M., Theuns, E., Lenaers, S., Van Loon, J., Heat recovery system for dishwashers (2003) Appl Therm Eng, 23, pp. 743-756; Chapin, F.W., Chapin, H.D., Armstrong, P.R., Waste water heat exchanger for laundromats - technical and behavioral considerations (1984) Journal of heat recovery systems, 4 (2), pp. 93-100; Wong, L.T., Mui, K.W., Guan, Y., Shower water heat recovery in high-rise residential buildings of Hong Kong (2010) Appl Energy, 87, pp. 703-709; Largest multi-family drain heat recovery installation (2002) GAfM, , REPP-CREST editor; Baek, N.C., Shin, U.C., Yoon, J.H., A study on the design and analysis of a heat pump heating system using wastewater as a heat source (2005) Solar Energy, 78 (3), pp. 427-440. , DOI 10.1016/j.solener.2004.07.009, PII S0038092X04002014; Lorvik, L.-A., (2007) Flush with Success: Novel Sewage-to-energy System in Oslo. District Energy, pp. 7-10. , International District Energy Association USA; Schitkowsky, A., Wäermerückgewinnung aus Abwasser - Beispele aus Berlin (2011) Siedlungswasserwirtschaft if, , editor. 3e Internationales Symposium "Re-Water Braunschweig". Braunschweig, Germany: Technische Universiteit Braunschweig; Wanner, O., Panagiotidis, V., Clavadetscher, P., Siegrist, H., Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants (2005) Water Research, 39 (19), pp. 4725-4734. , DOI 10.1016/j.watres.2005.09.026, PII S0043135405005403; Levasseur, T.J., McPartland, A., Heating with effluent: Capturing wasted heat from wastewater effluent (2010) J New Engl Water Environ Assoc, 44, pp. 30-34; Biesalski, M., Moderne Wärmetauschertechnologie aus Baden-Württemberg - Ein Exportprodukt Kongress Wärmegewinnung aus Abwasser Stuttgart. Stuttgart: Ministerium fur Umwelt, Naturschutx und Verker (2010) Baden-Wurttemberg; Stodtmeister, W., Heat production from wastewater: State of the technology, practical examples, and perspective (2009) GWF, Wasser - Abwasser, 150, pp. 768-772; Deiss, C., Energiequelle zum Heizen und Kühlen - Grösste Abwasserenergienutzungsanlage in der Schweiz (2007) GWA Gas, Wasser, Abwasser, 6, pp. 413-420; Wärmeverbund Wipkingen (2001) Saubere Luft Dank Wärme Aus Abwasser. Zürich: EWZ- Stadt Zürich;, p. 3. , EWZ; Frey, R., Energiestadt Lyss gewinnt Wärme aus Abwasser (2006) GWA Gas, Wasser, Abwasser, 3, p. 2; Malmo'S, D.E., (2008) City of Tomorrow: One Hundred Percent Renewable Energy Today. District Energy, pp. 7-9. , International District Energy Association USA; Andersson, O., Bo 01 ATES system for heating and cooling in Malmo (2007) Thermal Energy Storage for Sustainable Energy Consumption, pp. 235-238; Den Haag, G., (2009) Seawater to Heat Houses in Duindorp, , 24 August 2009 ed. Den Haag: Geemente Den Haag; Aparicio-Medrano, E., Wisse, K., Uittenboard, R., Energy capture using urban surface water: Modelling and in-situ measurements. In: Modelling (2009) 11th International IBPSA Conference Glasgow, pp. 716-723. , IBPSA, editor Scotland; Pär, D.A., District cooling. Cooling more with less (2006) Euroheat & Power, p. 32. , editor; Buyukalaca, O., Ekinci, F., Yilmaz, T., Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump (2003) Energy, 28 (2), pp. 157-169. , DOI 10.1016/S0360-5442(02)00088-9; Kavanaugh, S.P., Design considerations for ground and water source heat pumps in southern climates (1989) ASHRAE Trans, 95, pp. 1139-1149; Van Der Hoek, J.P., Energy from the water cycle: A promising combination to operate climate neutral (2011) Water Pract Technol, p. 6; Newman, L., Herbert, Y., The use of deep water cooling systems: Two Canadian examples (2009) Renewable Energy, 34, pp. 727-730; Durrenmatt, D.J., Wanner, O., Simulation of the wastewater temperature in sewers with TEMPEST (2008) Water Science and Technology, 57 (11), pp. 1809-1815. , DOI 10.2166/wst.2008.291; Sallanko, J., Pekkala, M., Wastewater temperature decrease in pressure sewers (2008) Water Environ Res, 80, pp. 2247-2252; Waneer, O., Panagiotidis, V., Siegrist, H., Wärmeentnahme aus der Kanalisation-Einfluss auf die Abwassertemperatur (Heat recovery from sewers: Effect on the wastewater temperature) (2004) Korrespondenz Abwasser, 51, pp. 489-495; Hendron, R., Burch, J., Hoeschele, M., Rainer, L., (2009) Potential for Energy Savings Through Residential Hot Water Distribution System Improvements, pp. 341-350. , San Francisco, CA; Bever, J., Stein, A., Teichmann, H., (2002) Weitergehende Abwasserreinigung, , 4th ed. Oldenbourg Industrieverlag München; Shah, R.K., Thonon, B., Benforado, D.M., Opportunities for heat exchanger applications in environmental systems (2000) Applied Thermal Engineering, 20 (7), pp. 631-650. , DOI 10.1016/S1359-4311(99)00045-9; Urs, S., (2007) Heat Exchanger and3 Installation for Extracting Heat from Waste Water, p. 1. , Urs S, editor. US Patent & Trademark Office. F28F 19/00 20060101 F28F019/00; F28F 13/18 20060101 F28F013/18 ed. USA


  • Energy recovery
  • Heat recovery systems
  • Urban water cycle
  • Wastewater
  • Water-energy nexus
  • Consumption of energy
  • Energy-efficient process
  • Primary energy demand
  • Treatment and disposal
  • Urban waters
  • Water energy
  • Energy efficiency
  • Energy utilization
  • Waste heat
  • Wastewater disposal
  • Water supply
  • Recovery
  • Urban transportation


Dive into the research topics of 'Energy in the urban water cycle: actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water'. Together they form a unique fingerprint.

Cite this