Abstract
This paper describes an investigation into the pathophysiological causes of abnormal cortical oscillations in Alzheimer's disease (AD) using two heterogeneous neuronal network models. The effect of excitatory circuit disruption on the beta band power (13-30 Hz) using a conductance-based network model of 200 neurons is assessed. Then, the neural correlates of abnormal cortical oscillations in different frequency bands based on a larger network model of 1000 neurons consisting of different types of cortical neurons is also analyzed. The results show that, despite the heterogeneity of the network models, the beta band power is significantly affected by excitatory neural and synaptic loss. Secondly, the results of modeling a functional impairment in the excitatory circuit shows that beta band power exhibits the most decrease compared with other bands. Previous biological experiments on different types of cultural excitatory neurons show that cortical neuronal death is mediated by dysfunctional ionic behavior that might specifically contribute to the pathogenesis of p-amyloid peptide (Ap)-induced neuronal death in AD. Our study also shows that beta band power was the first affected component when the modeled excitatory circuit begins to lose neurons and synapses. Alpha (8-12 Hz), gamma (30-50 Hz) and Full frequency (1-70 Hz) band power are affected in a later stage when more severe synaptic loss occurs.
Original language | English |
---|---|
Pages | 2065-2068 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 1 Dec 2011 |
Event | 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, USA United States Duration: 30 Aug 2011 → 3 Sept 2011 |
Conference
Conference | 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 |
---|---|
Country/Territory | USA United States |
City | Boston, MA |
Period | 30/08/11 → 3/09/11 |