Emergence of robustness against noise: a structural phase transition in evolved models of gene regulatory networks

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as the selective pressure is increased and identify a phase transition from a random topology to a “segregated-core” structure, where a smaller and more densely connected subset of the nodes is responsible for most of the regulation in the network. This segregated structure is very similar qualitatively to what is found in gene regulatory networks, where only a much smaller subset of genes—those responsible for transcription factors—is responsible for global regulation. We obtain the full phase diagram of the evolutionary process as a function of selective pressure and the average number of inputs per node. We compare the theoretical predictions with Monte Carlo simulations of evolved networks and with empirical data for Saccharomyces cerevisiae and Escherichia coli.
Original languageEnglish
Article number041908
JournalPhysical Review E
Volume85
Issue number4
DOIs
Publication statusPublished - 1 Apr 2012

Fingerprint Dive into the research topics of 'Emergence of robustness against noise: a structural phase transition in evolved models of gene regulatory networks'. Together they form a unique fingerprint.

  • Cite this