TY - JOUR
T1 - Electronic structures of antimony oxides
AU - Allen, J.P.
AU - Carey, J.J.
AU - Walsh, A.
AU - Scanlon, D.O.
AU - Watson, G.W.
PY - 2013/7/18
Y1 - 2013/7/18
N2 - This study details density functional theory calculations on all the polymorphs of the binary oxides of antimony (SbO, SbO, and SbO) to assess the electronic structures and differences in bonding between Sb and Sb ions with oxygen. The results show that lone-pair formation is via a similar mechanism to other main group elements which exhibit an oxidation state of two less than the group valence, through direct interaction of Sb 5s and O 2p states, with the antibonding interaction stabilized by Sb 5p states. Furthermore, structural distortion of the Sb site directly affects the strength of the resulting lone pair. In addition to the analysis of the density of states and charge density, band structures and optical absorption spectra are also detailed. The results indicate that all materials are indirect band gap materials, with the exception of the β-polymorphs of SbO and SbO. In addition, the fundamental and optical band gaps of the materials are found to decrease from Sb O to SbO to SbO . Calculated band-edge effective masses suggest that β-Sb O may exhibit reasonable p-type properties. Furthermore, β-SbO, γ-SbO, and SbO possess low electron effective masses which are conducive with strong n-type conduction.
AB - This study details density functional theory calculations on all the polymorphs of the binary oxides of antimony (SbO, SbO, and SbO) to assess the electronic structures and differences in bonding between Sb and Sb ions with oxygen. The results show that lone-pair formation is via a similar mechanism to other main group elements which exhibit an oxidation state of two less than the group valence, through direct interaction of Sb 5s and O 2p states, with the antibonding interaction stabilized by Sb 5p states. Furthermore, structural distortion of the Sb site directly affects the strength of the resulting lone pair. In addition to the analysis of the density of states and charge density, band structures and optical absorption spectra are also detailed. The results indicate that all materials are indirect band gap materials, with the exception of the β-polymorphs of SbO and SbO. In addition, the fundamental and optical band gaps of the materials are found to decrease from Sb O to SbO to SbO . Calculated band-edge effective masses suggest that β-Sb O may exhibit reasonable p-type properties. Furthermore, β-SbO, γ-SbO, and SbO possess low electron effective masses which are conducive with strong n-type conduction.
UR - http://www.scopus.com/inward/record.url?scp=84880539333&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1021/jp4026249
U2 - 10.1021/jp4026249
DO - 10.1021/jp4026249
M3 - Article
AN - SCOPUS:84880539333
SN - 1932-7447
VL - 117
SP - 14759
EP - 14769
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 28
ER -