27 Citations (SciVal)

Abstract

The electrochemical properties are explored of hydrous ruthenium oxide adsorbed in form of nanoparticles onto polished boron-doped diamond (BDD) substrates. Hydrous ruthenium oxide nanoparticles are prepared in two different sizes of average diam 8-14 nm (type A) and 1-2 nm (type B), and are shown to readily adsorb in form of a monolayer on polished BDD electrode surfaces. The electrochemically inert character and well-defined electrode surface area of the BDD electrodes allow properties of the nanoparticle layer to be investigated quantitatively and new electrochemical features to be observed. A prominent oxidation peak attributed to the conversion of the hydrous ruthenium (III) oxide to hydrous ruthenium(IV) oxide occurs at 0.82 V vs. saturated calomel electrode at pH 7. The Nernstian pH dependence of the peak potential over a wide pH range (1 to 13) is consistent with an oxidation accompanied by simultaneous expulsion of one equivalent of protons. After cathodic "activation," both types of nanoparticulate hydrous ruthenium oxide (type B more efficiently than type A) catalyze the hydrogen evolution reaction.

Original languageEnglish
Pages (from-to)E47-E50
JournalElectrochemical and Solid-State Letters
Volume5
Issue number9
DOIs
Publication statusPublished - 1 Sept 2002

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Electrochemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Electrochemical characterization of hydrous ruthenium oxide nanoparticle decorated boron-doped diamond electrodes'. Together they form a unique fingerprint.

Cite this