TY - JOUR
T1 - Electro-deposition and stripping of catalytically active iron metal nanoparticles at boron-doped diamond electrodes
AU - Saez, V
AU - Gonzalez-Garcia, J
AU - Kulandainathan, M A
AU - Marken, F
N1 - ID number: ISI:000246608800049
PY - 2007
Y1 - 2007
N2 - A new methodology for the electro-deposition and stripping of highly reactive iron nanoparticles at boron-doped diamond electrodes is proposed. In aqueous 1M NH4F iron metal readily and reversibly clectro-deposits onto boron-doped diamond electrodes. The effects of deposition potential, FeF63- concentration, deposition time, and mass transport are investigated. Power ultrasound (24 kHz, 8 W cm(-2)) is employed to achieve enhanced mass transport conditions. Scanning electron microscopy images of iron nanoparticles grown to typically 20-30 nm diameter are obtained. It is shown that a strongly and permanently adhering film of iron at boron-doped diamond can be formed and transferred into other solution environments. The catalytic reactivity of iron nanoparticle deposits at boron-doped diamond is investigated for the reductive dehalogenation of trichloroacetate. The kinetically limited multi-electron reduction of trichloroacetate is dependent on the FeF63- deposition conditions and the solution composition. It is demonstrated that a stepwise iron catalysed dechlorination via dichloroacetate and monochloroacetate to acetate is feasible. This methodology in conjunction with power ultrasound offers a novel, clean, and very versatile electro-dehalogenation methodology. The role of fluoride in the surface electrochemistry of iron deserves further attention. @ 2007 Elsevier B.V. All rights reserved.
AB - A new methodology for the electro-deposition and stripping of highly reactive iron nanoparticles at boron-doped diamond electrodes is proposed. In aqueous 1M NH4F iron metal readily and reversibly clectro-deposits onto boron-doped diamond electrodes. The effects of deposition potential, FeF63- concentration, deposition time, and mass transport are investigated. Power ultrasound (24 kHz, 8 W cm(-2)) is employed to achieve enhanced mass transport conditions. Scanning electron microscopy images of iron nanoparticles grown to typically 20-30 nm diameter are obtained. It is shown that a strongly and permanently adhering film of iron at boron-doped diamond can be formed and transferred into other solution environments. The catalytic reactivity of iron nanoparticle deposits at boron-doped diamond is investigated for the reductive dehalogenation of trichloroacetate. The kinetically limited multi-electron reduction of trichloroacetate is dependent on the FeF63- deposition conditions and the solution composition. It is demonstrated that a stepwise iron catalysed dechlorination via dichloroacetate and monochloroacetate to acetate is feasible. This methodology in conjunction with power ultrasound offers a novel, clean, and very versatile electro-dehalogenation methodology. The role of fluoride in the surface electrochemistry of iron deserves further attention. @ 2007 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.elecom.2007.01.018
DO - 10.1016/j.elecom.2007.01.018
M3 - Article
SN - 1388-2481
VL - 9
SP - 1127
EP - 1133
JO - Electrochemistry Communications
JF - Electrochemistry Communications
IS - 5
ER -