Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel NaV1.7

Akello J Agwa, Linda V Blomster, David J Craik, Glenn F King, Christina I Schroeder

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Gating modifier toxins from spider venom are disulfide-rich peptides that typically comprise a stabilizing inhibitor cystine knot (ICK). These knottin peptides are being pursued as therapeutic leads for a range of conditions linked to transmembrane proteins. Recently, double-knottin peptides discovered in spider venom and produced by recombinant expression have provided insights into the pharmacology of transmembrane channels. Here, we use chemoenzymatic ligation to produce double-knottins to probe the effect of bivalent modulation on the voltage-gated sodium channel subtype 1.7 (NaV1.7), which is implicated in pain signaling. Monovalent knottins were oxidatively folded and then biochemically conjugated using sortase A, to form double-knottins. The structural integrity of the peptides was confirmed using NMR, and fluorescence-based activity assays provided evidence suggesting that coincubated monovalent and bivalent knottins can cooperatively modulate NaV1.7. We anticipate that double-knottins will provide novel tools for enhancing our understanding of, and design strategies for, therapeutically relevant voltage-gated ion channels.

Original languageEnglish
Pages (from-to)3309-3319
Number of pages11
JournalBioconjugate Chemistry
Volume29
Issue number10
Early online date27 Aug 2018
DOIs
Publication statusPublished - 17 Oct 2018

Fingerprint Dive into the research topics of 'Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na<sub>V</sub>1.7'. Together they form a unique fingerprint.

Cite this