TY - JOUR
T1 - Effective cylindrical cell decompositions for restricted sub-Pfaffian sets
AU - Binyamini, Gal
AU - Vorobjov, Nicolai
N1 - Funding Information:
This work was supported by the Israel Science Foundation (1167/17); the Minerva Stiftung with the funds from the Ministry for Education and Research of the Federal Republic of Germany; and the European Research Council under the European Union's Horizon 2020 research and innovation programme (802107).
PY - 2022/3/31
Y1 - 2022/3/31
N2 - The o-minimal structure generated by the restricted Pfaffian functions, known as restricted sub-Pfaffian sets, admits a natural measure of complexity in terms of a format F, recording information like the number of variables and quantifiers involved in the definition of the set, and a degree D, recording the degrees of the equations involved. Khovanskii and later Gabrielov and Vorobjov have established many effective estimates for the geometric complexity of sub-Pfaffian sets in terms of these parameters. It is often important in applications that these estimates are polynomial in D. Despite much research done in this area, it is still not known whether cell decomposition, the foundational operation of o-minimal geometry, preserves polynomial dependence on D. We slightly modify the usual notions of format and degree and prove that with these revised notions, this does in fact hold. As one consequence, we also obtain the first polynomial (in D) upper bounds for the sum of Betti numbers of sets defined using quantified formulas in the restricted sub-Pfaffian structure.
AB - The o-minimal structure generated by the restricted Pfaffian functions, known as restricted sub-Pfaffian sets, admits a natural measure of complexity in terms of a format F, recording information like the number of variables and quantifiers involved in the definition of the set, and a degree D, recording the degrees of the equations involved. Khovanskii and later Gabrielov and Vorobjov have established many effective estimates for the geometric complexity of sub-Pfaffian sets in terms of these parameters. It is often important in applications that these estimates are polynomial in D. Despite much research done in this area, it is still not known whether cell decomposition, the foundational operation of o-minimal geometry, preserves polynomial dependence on D. We slightly modify the usual notions of format and degree and prove that with these revised notions, this does in fact hold. As one consequence, we also obtain the first polynomial (in D) upper bounds for the sum of Betti numbers of sets defined using quantified formulas in the restricted sub-Pfaffian structure.
UR - http://www.scopus.com/inward/record.url?scp=85126082079&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnaa285
DO - 10.1093/imrn/rnaa285
M3 - Article
SN - 1073-7928
VL - 2022
SP - 3493
EP - 3510
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
IS - 5
ER -