Abstract
This paper provides an insight into the effect of particle size of elemental metal powders and carbon source on the formation mechanism of Ti2AlC MAX-phase ceramic produced by self-propagating high-temperature synthesis (SHS). The effect of titanium, aluminium and carbon particle size on the 2Ti+Al+C→Ti2AlC reaction, the phase evolution of the final product and the porosity in both the green body and product has been examined. The effect of the carbon source in the form of graphite, carbon black and short carbon fibres on the reaction mechanism is explained. It is found that the particle size of the titanium and aluminium reactants had little effect on the phases formed but affected the green density of the reactants and the porosity in the final product. The carbon source used in the combustion reaction had an influence on the phases formed by the SHS reaction and was influenced by the dispersion of carbon particles and the titanium-aluminium particle contact.
Original language | English |
---|---|
Pages (from-to) | 4150-4157 |
Number of pages | 8 |
Journal | Ceramics International |
Volume | 42 |
Issue number | 3 |
Early online date | 22 Nov 2015 |
DOIs | |
Publication status | Published - 15 Feb 2016 |
Keywords
- Particle size
- Porosity
- SHS
- TiAlC
- XRD
Fingerprint
Dive into the research topics of 'Effect of particle size on the formation of Ti2AlC using combustion synthesis'. Together they form a unique fingerprint.Profiles
-
Chris Bowen
- Department of Mechanical Engineering - Professor
- Faculty of Engineering and Design - Associate Dean (Research)
- Centre for Sustainable and Circular Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Institute for Mathematical Innovation (IMI)
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
- IAAPS: Propulsion and Mobility
- EPSRC Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT)
Person: Research & Teaching, Core staff, Affiliate staff