TY - JOUR
T1 - Dynamical model of coherent circularly polarised optical pulse interactions with two-level quantum systems
AU - Slavcheva, G
AU - Hess, Ortwin
PY - 2005/11/3
Y1 - 2005/11/3
N2 - We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJz=±1) excited by a circularly polarized electromagnetic field [ Feynman et al. J. Appl. Phys. 28 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell’s equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms.
AB - We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJz=±1) excited by a circularly polarized electromagnetic field [ Feynman et al. J. Appl. Phys. 28 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell’s equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms.
UR - http://dx.doi.org/10.1103/PhysRevA.72.053804
U2 - 10.1103/PhysRevA.72.053804
DO - 10.1103/PhysRevA.72.053804
M3 - Article
SN - 1050-2947
VL - 72
JO - Physical Review A: Atomic, Molecular, and Optical Physics
JF - Physical Review A: Atomic, Molecular, and Optical Physics
M1 - 053804
ER -