Dynamic simulation model of a hydraulic valve utilizing the hörbiger plate principle and piezoactuation to achieve high bandwidth and flow performance

David Branson, Fengcai Wang, Christopher Bowen, Patrick Keogh

Research output: Contribution to conferencePaperpeer-review

1 Citation (SciVal)

Abstract

In order to increase hydraulically actuated machine system performance, valves with high performance bandwidths and large flow rates at low pressure drops are needed. While high flow rates were previously achieved using either very large spool strokes and/or diameters that would hinder valve performance, research is underway on a valve incorporating the Ho¨rbiger plate principle. This principle utilizes multiple metering edges to allow for increased flow at specified pressure drops and using small spool displacements. The valve configuration is then directly actuated using a piezoactuator to further increase valve dynamic response. This paper examines the development of a dynamic valve model using computational fluid dynamic simulations to predict fluid inertance parameters, and combines this with models for the piezoactuator, power amplifier, supply flow, fluid squeeze forces, end stop response, and valve mechanical components. Steady state and dynamic simulations of the valve are then evaluated. Copyright © 2008 by ASME.
Original languageEnglish
Pages125-132
Number of pages8
Publication statusPublished - 2009
Event2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008 - Boston, MA, USA United States
Duration: 31 Oct 20086 Nov 2008

Conference

Conference2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Country/TerritoryUSA United States
CityBoston, MA
Period31/10/086/11/08

Keywords

  • Low pressure drop
  • Dynamic simulation models
  • Machine systems
  • Computational fluid
  • Large flow rate
  • Hydraulic valves
  • Dynamic simulation
  • High-flow rate
  • High bandwidth
  • Metering edge
  • Mechanical components
  • Flow performance

Fingerprint

Dive into the research topics of 'Dynamic simulation model of a hydraulic valve utilizing the hörbiger plate principle and piezoactuation to achieve high bandwidth and flow performance'. Together they form a unique fingerprint.

Cite this