Drift robust non-rigid optical flow enhancement for long sequences

Wenbin Li, Darren Cosker, Matthew Brown

Research output: Contribution to journalArticlepeer-review

11 Citations (SciVal)
217 Downloads (Pure)

Abstract

It is hard to densely track a nonrigid object in long term, which is a fundamental research issue in the computer vision community. This task often relies on estimating pairwise correspondences between images over time where the error is accumulated and leads to a drift. In this paper, we introduce a novel optimisation framework with an Anchor Patch constraint. It is supposed to significantly reduce overall errors given long sequences containing nonrigidly deformable objects. Our framework can be applied to any dense tracking algorithm, e.g. optical flow. We demonstrate the success of our approach by showing significant error reduction on 6 popular optical flow algorithms applied to a range of realworld nonrigid benchmarks. We also provide quantitative analysis of our approach given synthetic occlusions and image noise.
Original languageEnglish
Pages (from-to)2583-2595
Number of pages13
JournalJournal of Intelligent and Fuzzy Systems
Volume31
Issue number5
DOIs
Publication statusPublished - 13 Oct 2016

Fingerprint

Dive into the research topics of 'Drift robust non-rigid optical flow enhancement for long sequences'. Together they form a unique fingerprint.

Cite this