Domain Decomposition Methods for Nuclear Reactor Modelling with Diffusion Acceleration

Jack Blake

Research output: ThesisDoctoral Thesis

Abstract

In this thesis we study methods for solving the neutron transport equation (or linear Boltzmann equation). This is an integro-differential equation that describes the behaviour of neutrons during a nuclear fission reaction. Applications of this equation include modelling behaviour within nuclear reactors and the design of shielding around x-ray facilities in hospitals. Improvements in existing modelling techniques are an important way to address environmental and safety concerns of nuclear reactors, and also the safety of people working with or near radiation.

The neutron transport equation typically has seven independent variables, however to facilitate rigorous mathematical analysis we consider the monoenergetic, steady-state equation without fission, and with isotropic interactions and isotropic source. Due to its high dimension, the equation is usually solved iteratively and we begin by considering a fundamental iterative method known as source iteration. We prove that the method converges assuming piecewise smooth material data, a result that is not present in the literature. We also improve upon known bounds on the rate of convergence assuming constant material data. We conclude by numerically verifying this new theory.

We move on to consider the use of a specific, well-known diffusion equation to approximate the solution to the neutron transport equation. We provide a thorough presentation of its derivation (along with suitable boundary conditions) using an asymptotic expansion and matching procedure, a method originally presented by Habetler and Matkowsky in 1975. Next we state the method of diffusion synthetic acceleration (DSA) for which the diffusion approximation is instrumental. From there we move on to explore a new method of seeing the link between the diffusion and transport equations through the use of a block operator argument.

Finally we consider domain decomposition algorithms for solving the neutron transport equation. Such methods have great potential for parallelisation and for the local application of different solution methods. A motivation for this work was to build an algorithm applying DSA only to regions of the domain where it is required. We give two very different domain decomposed source iteration algorithms, and we prove the convergence of both of these algorithms. This work provides a rigorous mathematical foundation for further development and exploration in this area. We conclude with numerical results to illustrate the new convergence theory, but also solve a physically-motivated problem using hybrid source iteration/ DSA algorithms and see significant reductions in the required computation time.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Graham, Ivan, Supervisor
  • Spence, Alastair, Supervisor
  • Smith, Paul, Supervisor, External person
Thesis sponsors
Award date29 Jul 2016
StatusPublished - Mar 2016

Fingerprint

Nuclear Reactor
Domain Decomposition Method
Neutron Transport
Transport Equation
Modeling
Iteration
Diffusion equation
Safety
Linear Boltzmann Equation
Behavior Modeling
Convergence Theory
Diffusion Approximation
Decomposition Algorithm
State Equation
Domain Decomposition
Neutron
Mathematical Analysis
Integro-differential Equation
Parallelization
Higher Dimensions

Keywords

  • domain decomposition
  • neutron transport
  • Boltzmann equation
  • diffusion acceleration
  • iterative methods
  • nuclear
  • diffusion synthetic acceleration
  • numerical analysis
  • Convergence of numerical methods

Cite this

Domain Decomposition Methods for Nuclear Reactor Modelling with Diffusion Acceleration. / Blake, Jack.

2016. 191 p.

Research output: ThesisDoctoral Thesis

@phdthesis{5d2cb6669dae4b09a17bc6c670c81345,
title = "Domain Decomposition Methods for Nuclear Reactor Modelling with Diffusion Acceleration",
abstract = "In this thesis we study methods for solving the neutron transport equation (or linear Boltzmann equation). This is an integro-differential equation that describes the behaviour of neutrons during a nuclear fission reaction. Applications of this equation include modelling behaviour within nuclear reactors and the design of shielding around x-ray facilities in hospitals. Improvements in existing modelling techniques are an important way to address environmental and safety concerns of nuclear reactors, and also the safety of people working with or near radiation. The neutron transport equation typically has seven independent variables, however to facilitate rigorous mathematical analysis we consider the monoenergetic, steady-state equation without fission, and with isotropic interactions and isotropic source. Due to its high dimension, the equation is usually solved iteratively and we begin by considering a fundamental iterative method known as source iteration. We prove that the method converges assuming piecewise smooth material data, a result that is not present in the literature. We also improve upon known bounds on the rate of convergence assuming constant material data. We conclude by numerically verifying this new theory. We move on to consider the use of a specific, well-known diffusion equation to approximate the solution to the neutron transport equation. We provide a thorough presentation of its derivation (along with suitable boundary conditions) using an asymptotic expansion and matching procedure, a method originally presented by Habetler and Matkowsky in 1975. Next we state the method of diffusion synthetic acceleration (DSA) for which the diffusion approximation is instrumental. From there we move on to explore a new method of seeing the link between the diffusion and transport equations through the use of a block operator argument. Finally we consider domain decomposition algorithms for solving the neutron transport equation. Such methods have great potential for parallelisation and for the local application of different solution methods. A motivation for this work was to build an algorithm applying DSA only to regions of the domain where it is required. We give two very different domain decomposed source iteration algorithms, and we prove the convergence of both of these algorithms. This work provides a rigorous mathematical foundation for further development and exploration in this area. We conclude with numerical results to illustrate the new convergence theory, but also solve a physically-motivated problem using hybrid source iteration/ DSA algorithms and see significant reductions in the required computation time.",
keywords = "domain decomposition, neutron transport, Boltzmann equation, diffusion acceleration, iterative methods, nuclear, diffusion synthetic acceleration, numerical analysis, Convergence of numerical methods",
author = "Jack Blake",
year = "2016",
month = "3",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - Domain Decomposition Methods for Nuclear Reactor Modelling with Diffusion Acceleration

AU - Blake,Jack

PY - 2016/3

Y1 - 2016/3

N2 - In this thesis we study methods for solving the neutron transport equation (or linear Boltzmann equation). This is an integro-differential equation that describes the behaviour of neutrons during a nuclear fission reaction. Applications of this equation include modelling behaviour within nuclear reactors and the design of shielding around x-ray facilities in hospitals. Improvements in existing modelling techniques are an important way to address environmental and safety concerns of nuclear reactors, and also the safety of people working with or near radiation. The neutron transport equation typically has seven independent variables, however to facilitate rigorous mathematical analysis we consider the monoenergetic, steady-state equation without fission, and with isotropic interactions and isotropic source. Due to its high dimension, the equation is usually solved iteratively and we begin by considering a fundamental iterative method known as source iteration. We prove that the method converges assuming piecewise smooth material data, a result that is not present in the literature. We also improve upon known bounds on the rate of convergence assuming constant material data. We conclude by numerically verifying this new theory. We move on to consider the use of a specific, well-known diffusion equation to approximate the solution to the neutron transport equation. We provide a thorough presentation of its derivation (along with suitable boundary conditions) using an asymptotic expansion and matching procedure, a method originally presented by Habetler and Matkowsky in 1975. Next we state the method of diffusion synthetic acceleration (DSA) for which the diffusion approximation is instrumental. From there we move on to explore a new method of seeing the link between the diffusion and transport equations through the use of a block operator argument. Finally we consider domain decomposition algorithms for solving the neutron transport equation. Such methods have great potential for parallelisation and for the local application of different solution methods. A motivation for this work was to build an algorithm applying DSA only to regions of the domain where it is required. We give two very different domain decomposed source iteration algorithms, and we prove the convergence of both of these algorithms. This work provides a rigorous mathematical foundation for further development and exploration in this area. We conclude with numerical results to illustrate the new convergence theory, but also solve a physically-motivated problem using hybrid source iteration/ DSA algorithms and see significant reductions in the required computation time.

AB - In this thesis we study methods for solving the neutron transport equation (or linear Boltzmann equation). This is an integro-differential equation that describes the behaviour of neutrons during a nuclear fission reaction. Applications of this equation include modelling behaviour within nuclear reactors and the design of shielding around x-ray facilities in hospitals. Improvements in existing modelling techniques are an important way to address environmental and safety concerns of nuclear reactors, and also the safety of people working with or near radiation. The neutron transport equation typically has seven independent variables, however to facilitate rigorous mathematical analysis we consider the monoenergetic, steady-state equation without fission, and with isotropic interactions and isotropic source. Due to its high dimension, the equation is usually solved iteratively and we begin by considering a fundamental iterative method known as source iteration. We prove that the method converges assuming piecewise smooth material data, a result that is not present in the literature. We also improve upon known bounds on the rate of convergence assuming constant material data. We conclude by numerically verifying this new theory. We move on to consider the use of a specific, well-known diffusion equation to approximate the solution to the neutron transport equation. We provide a thorough presentation of its derivation (along with suitable boundary conditions) using an asymptotic expansion and matching procedure, a method originally presented by Habetler and Matkowsky in 1975. Next we state the method of diffusion synthetic acceleration (DSA) for which the diffusion approximation is instrumental. From there we move on to explore a new method of seeing the link between the diffusion and transport equations through the use of a block operator argument. Finally we consider domain decomposition algorithms for solving the neutron transport equation. Such methods have great potential for parallelisation and for the local application of different solution methods. A motivation for this work was to build an algorithm applying DSA only to regions of the domain where it is required. We give two very different domain decomposed source iteration algorithms, and we prove the convergence of both of these algorithms. This work provides a rigorous mathematical foundation for further development and exploration in this area. We conclude with numerical results to illustrate the new convergence theory, but also solve a physically-motivated problem using hybrid source iteration/ DSA algorithms and see significant reductions in the required computation time.

KW - domain decomposition

KW - neutron transport

KW - Boltzmann equation

KW - diffusion acceleration

KW - iterative methods

KW - nuclear

KW - diffusion synthetic acceleration

KW - numerical analysis

KW - Convergence of numerical methods

M3 - Doctoral Thesis

ER -