Does supramolecular ordering influence exciton transport in conjugated systems? Insight from atomistic simulations

Theodoros A Papadopoulos, Luca Muccioli, Stavros Athanasopoulos, Alison B. Walker, Claudio Zannoni, David Beljonne

Research output: Contribution to journalArticlepeer-review

29 Citations (SciVal)
365 Downloads (Pure)

Abstract

We have developed a theoretical platform for modelling temperature-dependent exciton transport in organic materials, using indenofluorene trimers as a case study. Our atomistic molecular dynamics simulations confirm the experimentally observed occurrence of a liquid crystalline smectic phase at room temperature and predict a phase transition to the isotropic phase between 375 and 400 K. Strikingly, the increased orientational disorder at elevated temperatures barely affects the ability of excitons to be transported over large distances, though disorder influences the directionality of the energy diffusion process. Detailed quantum-chemical calculations show that this result arises from a trade-off between reduced excitonic couplings and increased spectral overlap at high temperatures. Our results suggest that liquid crystalline oligomeric materials could be promising candidates for engineering optoelectronic devices that require stable and controlled electronic properties over a wide range of temperatures and supramolecular arrangements.
Original languageEnglish
Pages (from-to)1025-1032
Number of pages8
JournalChemical Science
Volume2
Issue number6
Early online date11 Mar 2011
DOIs
Publication statusPublished - Jun 2011

Fingerprint

Dive into the research topics of 'Does supramolecular ordering influence exciton transport in conjugated systems? Insight from atomistic simulations'. Together they form a unique fingerprint.

Cite this