TY - JOUR
T1 - Do AKT1, COMT and FAAH influence reports of acute cannabis intoxication experiences in patients with first episode psychosis, controls and young adult cannabis users?
AU - Hindocha, Chandni
AU - Quattrone, Diego
AU - Freeman, Tom P
AU - Murray, Robin M
AU - Mondelli, Valeria
AU - Breen, Gerome
AU - Curtis, Charles
AU - Morgan, Celia J A
AU - Valerie Curran, H
AU - Di Forti, Marta
PY - 2020/5/12
Y1 - 2020/5/12
N2 - Epidemiological and biological evidence support the association between heavy cannabis use and psychosis. However, it is unclear which cannabis users are susceptible to its psychotogenic effect. Therefore, understanding genetic factors contributing to this relationship might prove an important strategy to identify the mechanisms underlying cannabis-associated psychotic experiences. We aimed to determine how variation in AKT1, COMT and FAAH genotypes, and their interaction with three different groups (first episode psychosis (FEP) patients (n = 143), controls (n = 92) and young adult (YA) cannabis users n = 485)) influenced cannabis experiences, in those who had used cannabis at least once. We investigated the role of AKT1 (rs2494732), COMT Val158Met (rs4680) and FAAH (rs324420) on cannabis experiences by combining data from a large case-control study of FEP patients, with a naturalistic study of YA cannabis users (n = 720). Outcome measures were cannabis-induced psychotic-like experiences (cPLEs) and euphoric experiences (cEEs). We used linear mixed effects models to assess the effects of each genotype and their interaction with group, adjusting for age, sex, ethnicity, age of first cannabis use, years of use and frequency. cPLEs were more frequent in FEP patients than controls and YA cannabis users. cEEs were more prevalent in YA cannabis users than FEP patients or controls. Variation in AKT1, COMT or FAAH was not associated with cPLEs/cEEs. There was no interaction between genotype and group (FEP cases, controls and YA cannabis users) on cPLEs/cEEs. In conclusion, AKT1, COMT or FAAH did not modulate specific psychotomimetic response to cannabis and did not interact with group, contrary to previous research.
AB - Epidemiological and biological evidence support the association between heavy cannabis use and psychosis. However, it is unclear which cannabis users are susceptible to its psychotogenic effect. Therefore, understanding genetic factors contributing to this relationship might prove an important strategy to identify the mechanisms underlying cannabis-associated psychotic experiences. We aimed to determine how variation in AKT1, COMT and FAAH genotypes, and their interaction with three different groups (first episode psychosis (FEP) patients (n = 143), controls (n = 92) and young adult (YA) cannabis users n = 485)) influenced cannabis experiences, in those who had used cannabis at least once. We investigated the role of AKT1 (rs2494732), COMT Val158Met (rs4680) and FAAH (rs324420) on cannabis experiences by combining data from a large case-control study of FEP patients, with a naturalistic study of YA cannabis users (n = 720). Outcome measures were cannabis-induced psychotic-like experiences (cPLEs) and euphoric experiences (cEEs). We used linear mixed effects models to assess the effects of each genotype and their interaction with group, adjusting for age, sex, ethnicity, age of first cannabis use, years of use and frequency. cPLEs were more frequent in FEP patients than controls and YA cannabis users. cEEs were more prevalent in YA cannabis users than FEP patients or controls. Variation in AKT1, COMT or FAAH was not associated with cPLEs/cEEs. There was no interaction between genotype and group (FEP cases, controls and YA cannabis users) on cPLEs/cEEs. In conclusion, AKT1, COMT or FAAH did not modulate specific psychotomimetic response to cannabis and did not interact with group, contrary to previous research.
U2 - 10.1038/s41398-020-0823-9
DO - 10.1038/s41398-020-0823-9
M3 - Article
C2 - 32398646
SN - 2158-3188
VL - 10
SP - 143
JO - Translational Psychiatry
JF - Translational Psychiatry
IS - 1
M1 - 143
ER -