@inproceedings{a688cf4934614f58a8e30c61930224c2,
title = "Distributed Compressed Sensing for Sensor Networks Using Thresholding",
abstract = "Distributed compressed sensing is the extension of compressed sampling (CS) to sensor networks. The idea is to design a CS joint decoding scheme at a central decoder (base station) that exploits the inter-sensor correlations, in order to recover the whole observations from very few number of random measurements per node. In this paper, we focus on modeling the correlations and on the design and analysis of efficient joint recovery algorithms. We show, by extending earlier results of Baron et al.,1 that a simple thresholding algorithm can exploit the full diversity offered by all channels to identify a common sparse support using a near optimal number of measurements.",
author = "Mohammad Golbabaee and Pierre Vandergheynst",
year = "2009",
doi = "10.1117/12.827880",
language = "English",
isbn = "9780819477361",
series = "SPIE - International Society for Optics and Photonics",
publisher = "Curran Associates, Inc.",
number = "74461F",
editor = "Goyal, {Vivek K.}",
booktitle = "Wavelet XIII, SPIE Optical Engineering + Applications",
address = "USA United States",
note = "SPIE Optical Engineering + Applications, 2009 ; Conference date: 02-08-2009 Through 04-08-2009",
}