Abstract
The survival and well-being of humans require solving the patch-switching problem: we must decide when to stop collecting rewards in a current patch and travel somewhere else where gains may be higher. Previous studies suggested that frontal regions are underpinned by several processes in the context of foraging decisions such as tracking task difficulty, and/or the value of exploring the environment. To dissociate between these processes, participants completed an fMRI patch-switching learning task inspired by behavioral ecology. By analyzing >11,000 trials collected across 21 participants, we found that the activation in the cingulate cortex was closely related to several patch-switching-related variables including the decision to leave the current patch, the encounter of a new patch, the harvest value, and the relative forage value. Learning-induced changes in the patch-switching threshold were tracked by activity within frontoparietal regions including the superior frontal gyrus and angular gyrus. Our findings suggest that frontoparietal regions shape patch-switching learning apart from encoding classical non-learning foraging processes. These findings provide a novel neurobiological understanding of how learning emerges neurocomputationally shaping patch-switching behavior with implications in real-life choices such as job selection and pave the way for future studies to probe the causal role of these neurobiological mechanisms.
Original language | English |
---|---|
Pages (from-to) | 7930–7940 |
Number of pages | 11 |
Journal | Cerebral Cortex |
Volume | 33 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Jun 2023 |
Bibliographical note
Funding Information:We are grateful to Dr Amitai Shenhav and Dr Sara Constantino for their comments on earlier drafts of the manuscript. The School of Psychology, Cardiff University.
Keywords
- fMRI
- individual differences
- learning
- patch-switching
ASJC Scopus subject areas
- Cellular and Molecular Neuroscience
- Cognitive Neuroscience