Abstract
The objective of this preliminary investigation was to examine the disposition of charged nanoparticles on and within the skin following their topical application and to explore whether the formulations have potential utility for the local delivery of an associated 'active' substance. Three nanoparticles (approx. 100 nm in diameter) were investigated: cationic amino-functionalized polystyrene, an anionic carboxyl-functionalized polystyrene and anionic poly-(L-lactide), into each of which the fluorophore N-(2,6-diisopropylphenyl) perylene-3,4-dicarboximine (PMI) was incorporated. Formulations were applied to excised porcine skin in vitro for 6 h. After cleaning the skin surface following treatment, the skin was either examined by laser scanning confocal microscopy or subjected to repeated tape-stripping and subsequent analysis of the removed stratum corneum (SC) for the presence of PMI. The cationic nanoparticles showed clear affinity for the negatively charged skin surface (in contrast to the anionic carriers) and delivered a significantly greater amount of the model 'active' agent (PMI) into the SC.
Original language | English |
---|---|
Pages (from-to) | 117-123 |
Number of pages | 7 |
Journal | Skin Pharmacology and Physiology |
Volume | 23 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2010 |