TY - JOUR
T1 - Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at z = 1.754
T2 - Implications for Delay Time Distributions
AU - Paterson, K.
AU - Fong, W.
AU - Nugent, A.
AU - Escorial, A. Rouco
AU - Leja, J.
AU - Laskar, T.
AU - Chornock, R.
AU - Miller, A. A.
AU - Scharw chter, J.
AU - Cenko, S. B.
AU - Perley, D.
AU - Tanvir, N. R.
AU - Levan, A.
AU - Cucchiara, A.
AU - Cobb, B. E.
AU - De, K.
AU - Berger, E.
AU - Terreran, G.
AU - Alexander, K. D.
AU - Nicholl, M.
AU - Blanchard, P. K.
AU - Cornish, D.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - We present the discovery of the optical afterglow and host galaxy of the Swift short-duration gamma-ray burst (SGRB) GRB 181123B. Observations with Gemini-North starting ≈9.1 hr after the burst reveal a faint optical afterglow with i ≈ 25.1 mag at an angular offset of 0.″59 0.″16 from its host galaxy. Using grizYJHK observations, we measure a photometric redshift of the host galaxy of z=1.77-0.17+0.30. From a combination of Gemini and Keck spectroscopy of the host galaxy spanning 4500-18000 Å, we detect a single emission line at 13390 Å, inferred as Hβ at z = 1.754 0.001 and corroborating the photometric redshift. The host galaxy properties of GRB 181123B are typical of those of other SGRB hosts, with an inferred stellar mass of ≈9.1 109 M o˙, a mass-weighted age of ≈0.9 Gyr, and an optical luminosity of ≈0.9L∗. At z = 1.754, GRB 181123B is the most distant secure SGRB with an optical afterglow detection and one of only three at z > 1.5. Motivated by a growing number of high-z SGRBs, we explore the effects of a missing z > 1.5 SGRB population among the current Swift sample on delay time distribution (DTD) models. We find that lognormal models with mean delay times of ≈4-6 Gyr are consistent with the observed distribution but can be ruled out to 95% confidence, with an additional ≈one to five Swift SGRBs recovered at z > 1.5. In contrast, power-law models with ∝t -1 are consistent with the redshift distribution and can accommodate up to ≈30 SGRBs at these redshifts. Under this model, we predict that ≈1/3 of the current Swift population of SGRBs is at z > 1. The future discovery or recovery of existing high-z SGRBs will provide significant discriminating power on their DTDs and thus their formation channels.
AB - We present the discovery of the optical afterglow and host galaxy of the Swift short-duration gamma-ray burst (SGRB) GRB 181123B. Observations with Gemini-North starting ≈9.1 hr after the burst reveal a faint optical afterglow with i ≈ 25.1 mag at an angular offset of 0.″59 0.″16 from its host galaxy. Using grizYJHK observations, we measure a photometric redshift of the host galaxy of z=1.77-0.17+0.30. From a combination of Gemini and Keck spectroscopy of the host galaxy spanning 4500-18000 Å, we detect a single emission line at 13390 Å, inferred as Hβ at z = 1.754 0.001 and corroborating the photometric redshift. The host galaxy properties of GRB 181123B are typical of those of other SGRB hosts, with an inferred stellar mass of ≈9.1 109 M o˙, a mass-weighted age of ≈0.9 Gyr, and an optical luminosity of ≈0.9L∗. At z = 1.754, GRB 181123B is the most distant secure SGRB with an optical afterglow detection and one of only three at z > 1.5. Motivated by a growing number of high-z SGRBs, we explore the effects of a missing z > 1.5 SGRB population among the current Swift sample on delay time distribution (DTD) models. We find that lognormal models with mean delay times of ≈4-6 Gyr are consistent with the observed distribution but can be ruled out to 95% confidence, with an additional ≈one to five Swift SGRBs recovered at z > 1.5. In contrast, power-law models with ∝t -1 are consistent with the redshift distribution and can accommodate up to ≈30 SGRBs at these redshifts. Under this model, we predict that ≈1/3 of the current Swift population of SGRBs is at z > 1. The future discovery or recovery of existing high-z SGRBs will provide significant discriminating power on their DTDs and thus their formation channels.
UR - http://www.scopus.com/inward/record.url?scp=85091705741&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/aba4b0
DO - 10.3847/2041-8213/aba4b0
M3 - Article
AN - SCOPUS:85091705741
SN - 2041-8205
VL - 898
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L32
ER -