Direct synthesis of H2O2 in methanol at low pressures over Pd/C catalyst: Semi-continuous process

T Moreno, J Garcia-Serna, Pawel Plucinski, M J Sanchez-Montero, M J Cocero

Research output: Contribution to journalArticlepeer-review

24 Citations (SciVal)

Abstract

The production of H2O2 via direct synthesis has been studied in depth over the last decades, due to the possibilities given by the discovery of active catalysts based on nanotechnology and selective active metals. However, the process is also complicated because of the coexistence of three phases, where mass transfer between gas and liquid (solvent) limits the concentration of O-2 and H-2 in contact with the solid catalyst sites, and subsequently the final H2O2 productivity. High pressures are normally used to enhance mass transfer by increasing the solubility. In this work, we explore the influence of low pressures, in order to optimise the reaction reducing mechanical requirements. Pressures from 0.1 to 0.9 MPa in a semi-continuous reactor have been tested, obtaining H2O2 concentrations up to 1.33 wt.% and a selectivity from 44.9% to 69.0%. A nano-Pd/C commercial catalyst and methanol as solvent have been used.
Original languageEnglish
Pages (from-to)28-33
Number of pages6
JournalApplied Catalysis A General
Volume386
Issue number1-2
DOIs
Publication statusPublished - 30 Sept 2010

Keywords

  • H2O2
  • Pd catalyst
  • direct synthesis
  • slurry reactor

Fingerprint

Dive into the research topics of 'Direct synthesis of H2O2 in methanol at low pressures over Pd/C catalyst: Semi-continuous process'. Together they form a unique fingerprint.

Cite this