Differences in creatine retention among three nutritional formulations of oral creatine supplements

M Greenwood, R B Kreider, Conrad P Earnest, C Rasmussen, A L Almada

Research output: Contribution to journalArticle

  • 14 Citations

Abstract

Previous research has indicated that creatine retention is influenced by intramuscular creatine concentration and extracellular concentrations of glucose and insulin. This study examined whether different nutritional strategies affect whole body creatine retention. Specifically, 16 males with no history of creatine supplementation participated in this study. Subjects donated 24-hr urine samples for 4 days. After an initial control day, subjects were matched according to body mass and assigned to ingest in a single blind manner either 5 g of dextrose (D), 5 g of creatine monohydrate (CM), 5 g of CM + 18 g dextrose (C+D), or an effervescent creatine (EC) supplement (5 g of creatine + 18 g dextrose + 320 mg of sodium [as sodium carbonate and bicarbonate] + 175 mg of potassium [as potassium bicarbonate]) four times/day for 3 days. Creatine retention was estimated by subtracting total urinary creatine excretion from total supplemental creatine intake over the 3 day period. Data were analyzed by ANOVA. Results revealed that creatine retention was increased following creatine supplementation in all groups (D=0±0; CM= 36.6±9; C+D=48.0±7; EC=37.8±8 g, p=0.001). However, creatine retention in the C+D group was significantly greater than the CM group while no differences were observed between the EC and CM groups. This resulted in a greater percentage of creatine retention in the CD group (D= 0±0; CM=61±15; C+D=80±11; EC=63±13 %, p=0.001). These preliminary findings suggest that in accordance with previous research, ingesting dextrose (18 g) with CM (5 g) augments whole body creatine retention while EC supplementation appears to be no more effective than ingesting CM alone.
LanguageEnglish
Pages37-43
Number of pages7
JournalJournal of Exercise Physiology Online
Volume6
Issue number2
StatusPublished - 2003

Fingerprint

Creatine
Glucose

Keywords

  • Ergogenic Aid
  • Dietary Supplementation
  • Exercise
  • Sport Nutrition

Cite this

Greenwood, M., Kreider, R. B., Earnest, C. P., Rasmussen, C., & Almada, A. L. (2003). Differences in creatine retention among three nutritional formulations of oral creatine supplements.

Differences in creatine retention among three nutritional formulations of oral creatine supplements. / Greenwood, M; Kreider, R B; Earnest, Conrad P; Rasmussen, C; Almada, A L.

In: Journal of Exercise Physiology Online, Vol. 6, No. 2, 2003, p. 37-43.

Research output: Contribution to journalArticle

Greenwood, M, Kreider, RB, Earnest, CP, Rasmussen, C & Almada, AL 2003, 'Differences in creatine retention among three nutritional formulations of oral creatine supplements' Journal of Exercise Physiology Online, vol. 6, no. 2, pp. 37-43.
Greenwood, M ; Kreider, R B ; Earnest, Conrad P ; Rasmussen, C ; Almada, A L. / Differences in creatine retention among three nutritional formulations of oral creatine supplements. In: Journal of Exercise Physiology Online. 2003 ; Vol. 6, No. 2. pp. 37-43
@article{981c68807d90455d86d9c543d43f41b1,
title = "Differences in creatine retention among three nutritional formulations of oral creatine supplements",
abstract = "Previous research has indicated that creatine retention is influenced by intramuscular creatine concentration and extracellular concentrations of glucose and insulin. This study examined whether different nutritional strategies affect whole body creatine retention. Specifically, 16 males with no history of creatine supplementation participated in this study. Subjects donated 24-hr urine samples for 4 days. After an initial control day, subjects were matched according to body mass and assigned to ingest in a single blind manner either 5 g of dextrose (D), 5 g of creatine monohydrate (CM), 5 g of CM + 18 g dextrose (C+D), or an effervescent creatine (EC) supplement (5 g of creatine + 18 g dextrose + 320 mg of sodium [as sodium carbonate and bicarbonate] + 175 mg of potassium [as potassium bicarbonate]) four times/day for 3 days. Creatine retention was estimated by subtracting total urinary creatine excretion from total supplemental creatine intake over the 3 day period. Data were analyzed by ANOVA. Results revealed that creatine retention was increased following creatine supplementation in all groups (D=0±0; CM= 36.6±9; C+D=48.0±7; EC=37.8±8 g, p=0.001). However, creatine retention in the C+D group was significantly greater than the CM group while no differences were observed between the EC and CM groups. This resulted in a greater percentage of creatine retention in the CD group (D= 0±0; CM=61±15; C+D=80±11; EC=63±13 {\%}, p=0.001). These preliminary findings suggest that in accordance with previous research, ingesting dextrose (18 g) with CM (5 g) augments whole body creatine retention while EC supplementation appears to be no more effective than ingesting CM alone.",
keywords = "Ergogenic Aid, Dietary Supplementation, Exercise, Sport Nutrition",
author = "M Greenwood and Kreider, {R B} and Earnest, {Conrad P} and C Rasmussen and Almada, {A L}",
year = "2003",
language = "English",
volume = "6",
pages = "37--43",
journal = "Journal of Exercise Physiology Online",
issn = "1097-9751",
publisher = "American Society of Exercise Physiologists",
number = "2",

}

TY - JOUR

T1 - Differences in creatine retention among three nutritional formulations of oral creatine supplements

AU - Greenwood,M

AU - Kreider,R B

AU - Earnest,Conrad P

AU - Rasmussen,C

AU - Almada,A L

PY - 2003

Y1 - 2003

N2 - Previous research has indicated that creatine retention is influenced by intramuscular creatine concentration and extracellular concentrations of glucose and insulin. This study examined whether different nutritional strategies affect whole body creatine retention. Specifically, 16 males with no history of creatine supplementation participated in this study. Subjects donated 24-hr urine samples for 4 days. After an initial control day, subjects were matched according to body mass and assigned to ingest in a single blind manner either 5 g of dextrose (D), 5 g of creatine monohydrate (CM), 5 g of CM + 18 g dextrose (C+D), or an effervescent creatine (EC) supplement (5 g of creatine + 18 g dextrose + 320 mg of sodium [as sodium carbonate and bicarbonate] + 175 mg of potassium [as potassium bicarbonate]) four times/day for 3 days. Creatine retention was estimated by subtracting total urinary creatine excretion from total supplemental creatine intake over the 3 day period. Data were analyzed by ANOVA. Results revealed that creatine retention was increased following creatine supplementation in all groups (D=0±0; CM= 36.6±9; C+D=48.0±7; EC=37.8±8 g, p=0.001). However, creatine retention in the C+D group was significantly greater than the CM group while no differences were observed between the EC and CM groups. This resulted in a greater percentage of creatine retention in the CD group (D= 0±0; CM=61±15; C+D=80±11; EC=63±13 %, p=0.001). These preliminary findings suggest that in accordance with previous research, ingesting dextrose (18 g) with CM (5 g) augments whole body creatine retention while EC supplementation appears to be no more effective than ingesting CM alone.

AB - Previous research has indicated that creatine retention is influenced by intramuscular creatine concentration and extracellular concentrations of glucose and insulin. This study examined whether different nutritional strategies affect whole body creatine retention. Specifically, 16 males with no history of creatine supplementation participated in this study. Subjects donated 24-hr urine samples for 4 days. After an initial control day, subjects were matched according to body mass and assigned to ingest in a single blind manner either 5 g of dextrose (D), 5 g of creatine monohydrate (CM), 5 g of CM + 18 g dextrose (C+D), or an effervescent creatine (EC) supplement (5 g of creatine + 18 g dextrose + 320 mg of sodium [as sodium carbonate and bicarbonate] + 175 mg of potassium [as potassium bicarbonate]) four times/day for 3 days. Creatine retention was estimated by subtracting total urinary creatine excretion from total supplemental creatine intake over the 3 day period. Data were analyzed by ANOVA. Results revealed that creatine retention was increased following creatine supplementation in all groups (D=0±0; CM= 36.6±9; C+D=48.0±7; EC=37.8±8 g, p=0.001). However, creatine retention in the C+D group was significantly greater than the CM group while no differences were observed between the EC and CM groups. This resulted in a greater percentage of creatine retention in the CD group (D= 0±0; CM=61±15; C+D=80±11; EC=63±13 %, p=0.001). These preliminary findings suggest that in accordance with previous research, ingesting dextrose (18 g) with CM (5 g) augments whole body creatine retention while EC supplementation appears to be no more effective than ingesting CM alone.

KW - Ergogenic Aid

KW - Dietary Supplementation

KW - Exercise

KW - Sport Nutrition

M3 - Article

VL - 6

SP - 37

EP - 43

JO - Journal of Exercise Physiology Online

T2 - Journal of Exercise Physiology Online

JF - Journal of Exercise Physiology Online

SN - 1097-9751

IS - 2

ER -