Projects per year
Abstract
In addition to chloride induced corrosion, the other commonly occurring type of rebar corrosion in reinforced concrete structures is that induced by the ingress of atmospheric carbon dioxide into concrete, commonly referred to as ‘carbonation induced corrosion’. This paper presents a new approach for detecting the onset and quantifying the level of carbonation induced rebar corrosion. The approach is based on the changes in the mechanical impedance parameters acquired using the electro-mechanical coupling of a piezoelectric lead zirconate titanate (PZT) ceramic patch bonded to the surface of the rebar. The approach is non-destructive and is demonstrated though accelerated tests on reinforced concrete specimens subjected to controlled carbon dioxide exposure for a period spanning over 230 days. The equivalent stiffness parameter, extracted from the frequency response of the admittance signatures of the PZT patch, is found to increase with penetration of carbon dioxide inside the surface and the consequent carbonation, an observation that is correlated with phenolphthalein staining. After the onset of rebar corrosion, the equivalent stiffness parameter exhibited a reduction in magnitude over time, providing a clear indication of the occurrence of corrosion and the results are correlated with scanning electron microscope images and Raman spectroscopy measurements. The average rate of corrosion is determined using the equivalent mass parameter. The use of PZT ceramic transducers, therefore, provides an alternate and effective technique for diagnosis of carbonation induced rebar corrosion initiation and progression in reinforced concrete structures non-destructively.
Original language | English |
---|---|
Pages (from-to) | 79-91 |
Number of pages | 13 |
Journal | Sensors and Actuators A-Physical |
Volume | 242 |
Early online date | 21 Feb 2016 |
DOIs | |
Publication status | Published - 1 May 2016 |
Keywords
- SEM
- Chloride
- Corrosion
- Carbonation
- Steel Reinforced Concrete
Fingerprint
Dive into the research topics of 'Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Experimentally Verfied Atomistic Modelling of Lime in Construction Materials
Ball, R. (PI) & Parker, S. (CoI)
Engineering and Physical Sciences Research Council
3/06/13 → 2/12/16
Project: Research council
Profiles
-
Richard Ball
- Department of Architecture & Civil Engineering - Reader
- Centre for Sustainable Chemical Technologies (CSCT)
- Centre for Integrated Materials, Processes & Structures (IMPS)
- Centre for Climate Adaptation & Environment Research (CAER)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
Person: Research & Teaching, Core staff, Affiliate staff
-
Chris Bowen
- Department of Mechanical Engineering - Professor
- Faculty of Engineering and Design - Associate Dean (Research)
- Centre for Sustainable Chemical Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Institute for Mathematical Innovation (IMI)
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff
-
Kevin Paine
- Department of Architecture & Civil Engineering - Professor
- Centre for Climate Adaptation & Environment Research (CAER) - Centre Director
Person: Research & Teaching, Core staff
Equipment
-
Raman confocal microscope RENISHAM INVIA
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment