Development of nonlinear acoustic and air-coupled techniques for non-destructive testing

Marco Boccaccio, Gian Piero Malfense Fierro, Michele Meo

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

3 Citations (SciVal)

Abstract

Damage such as micro cracks, layer delaminations, corrosion or barely visible impact damage (BVID) could irreparably affect the integrity of the structure. These defects are not ever detectable by the common inspection techniques based on the ultrasonic wave propagation. However, a number of techniques based on nonlinear wave behaviour have been recently developed to improve the sensitivity of ultrasonic methods. The nonlinear acoustic approach proposed in this work relied on generation of new frequency generation due to defects. The spectral changes are caused by nonlinear local dynamics of defects of various scale and nature due to contact between crack surfaces. A standard Air Coupled ultrasound (ACU) system arranged with 88 transmitting elements and 1 receiving element focused on the same point (N=88 mm) with a central frequency (f0) of 41 KHz was used to excite corroded samples. Results showed that the intact parts of the material outside the defect vibrate linearly, i.e. with no greatly frequency variation in the output spectrum, whilst a small cracked defect behaves as an active radiation source of a new frequency component (2f0). For the nonlinear ultrasonic testing, the second order nonlinear parameter (β) was chosen as the nonlinear feature to damage identification. In conclusion this research work demonstrated that nonlinear techniques are suitable for numerous classes of defects, such as fatigue cracks and corrosion (micro-cracks).

Original languageEnglish
Title of host publicationNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII
EditorsAndrew L. Gyekenyesi, Tzu-Yang Yu, H. Felix Wu, Peter J. Shull
PublisherSPIE
ISBN (Electronic)9781510625976
DOIs
Publication statusPublished - 1 Jan 2019
EventNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII 2019 - Denver, USA United States
Duration: 4 Mar 20197 Mar 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10971
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII 2019
Country/TerritoryUSA United States
CityDenver
Period4/03/197/03/19

Keywords

  • Air-Coupled ultrasound
  • Defects
  • Micro-cracks
  • Non-Destructive testing
  • Nonlinear Imaging
  • Nonlinear Ultrasound

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Development of nonlinear acoustic and air-coupled techniques for non-destructive testing'. Together they form a unique fingerprint.

Cite this