Abstract
The use of mild steel/tempered glass adhesive joints has increased rapidly over recent years. Cohesive zone modelling (CZM) is used extensively for the numerical analysis and failure prediction of adhesive joints. The bonding to the glass surface is generally weaker than the bonding to metal substrates, and therefore the development of cohesive laws by testing on different substrates generally leads to overoptimistic and non-conservative predictions. However, the interface characterisation using standardised methods for glass/steel joints is complicated due to the relatively low strength of the glass substrate leading to premature failure. This paper presents modifications proposed for the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests bonded with dissimilar glass/steel adherends used to extract traction-separation laws in fracture modes I and II. For this relatively small coupon size, an in-house glass heat strengthening process was developed. The cohesive laws were validated by comparing the numerical predictions for two different adhesives with experimental test data for double lap shear joints subjected to four different load cases.
Original language | English |
---|---|
Article number | 102479 |
Journal | International Journal of Adhesion and Adhesives |
Volume | 97 |
Early online date | 4 Nov 2019 |
DOIs | |
Publication status | Published - 31 Mar 2020 |
Keywords
- Cohesive zone model
- Double cantilever beam
- Finite element stress analysis
- Fracture toughness
- Glass
- Single leg bending
ASJC Scopus subject areas
- Biomaterials
- General Chemical Engineering
- Polymers and Plastics