TY - JOUR
T1 - Development of an accelerometer-based multivariate model to predict free-living energy expenditure in a large military cohort
AU - Horner, F.
AU - Bilzon, J.L.
AU - Rayson, M.
AU - Blacker, S.
AU - Richmond, V.
AU - Carter, J.
AU - Wright, A.
AU - Nevill, A.
PY - 2013/4
Y1 - 2013/4
N2 - This study developed a multivariate model to predict free-living energy expenditure (EE) in independent military cohorts. Two hundred and eighty-eight individuals (20.6 ± 3.9 years, 67.9 ± 12.0 kg, 1.71 ± 0.10 m) from 10 cohorts wore accelerometers during observation periods of 7 or 10 days. Accelerometer counts (PAC) were recorded at 1-minute epochs. Total energy expenditure (TEE) and physical activity energy expenditure (PAEE) were derived using the doubly labelled water technique. Data were reduced to n = 155 based on wear-time. Associations between PAC and EE were assessed using allometric modelling. Models were derived using multiple log-linear regression analysis and gender differences assessed using analysis of covariance. In all models PAC, height and body mass were related to TEE (P < 0.01). For models predicting TEE (r 2 = 0.65, SE = 462 kcal · d−1 (13.0%)), PAC explained 4% of the variance. For models predicting PAEE (r 2 = 0.41, SE = 490 kcal · d−1 (32.0%)), PAC accounted for 6% of the variance. Accelerometry increases the accuracy of EE estimation in military populations. However, the unique nature of military life means accurate prediction of individual free-living EE is highly dependent on anthropometric measurements.
AB - This study developed a multivariate model to predict free-living energy expenditure (EE) in independent military cohorts. Two hundred and eighty-eight individuals (20.6 ± 3.9 years, 67.9 ± 12.0 kg, 1.71 ± 0.10 m) from 10 cohorts wore accelerometers during observation periods of 7 or 10 days. Accelerometer counts (PAC) were recorded at 1-minute epochs. Total energy expenditure (TEE) and physical activity energy expenditure (PAEE) were derived using the doubly labelled water technique. Data were reduced to n = 155 based on wear-time. Associations between PAC and EE were assessed using allometric modelling. Models were derived using multiple log-linear regression analysis and gender differences assessed using analysis of covariance. In all models PAC, height and body mass were related to TEE (P < 0.01). For models predicting TEE (r 2 = 0.65, SE = 462 kcal · d−1 (13.0%)), PAC explained 4% of the variance. For models predicting PAEE (r 2 = 0.41, SE = 490 kcal · d−1 (32.0%)), PAC accounted for 6% of the variance. Accelerometry increases the accuracy of EE estimation in military populations. However, the unique nature of military life means accurate prediction of individual free-living EE is highly dependent on anthropometric measurements.
UR - http://www.scopus.com/inward/record.url?scp=84869038123&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1080/02640414.2012.734632
U2 - 10.1080/02640414.2012.734632
DO - 10.1080/02640414.2012.734632
M3 - Article
VL - 31
SP - 354
EP - 360
JO - Journal of Sports Sciences
JF - Journal of Sports Sciences
SN - 0264-0414
IS - 4
ER -