Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements

Abdullah Alshuhri, Timothy Holsgrove, A.W. Miles, James Cunningham

Research output: Contribution to journalArticle

14 Citations (Scopus)
164 Downloads (Pure)

Abstract

Current techniques for diagnosing early loosening of a total hip replacement (THR) are ineffective, especially for the acetabular component. Accordingly, new, accurate, and quantifiable methods are required. The aim of this study was to investigate the viability of vibrational analysis for accurately detecting acetabular component loosening. A simplified acetabular model was constructed using a Sawbones® foam block. By placing a thin silicone layer between the acetabular component and the Sawbones block, 2- and 4-mm soft tissue membranes were simulated representing different loosening scenarios. A constant amplitude sinusoidal excitation with a sweep range of 100–1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of observed harmonic frequencies. Both measurement methods were sufficient to measure the output vibration. Vibrational analysis reliably detected loosening corresponding to both 2 and 4 mm tissue membranes at driving frequencies between 100 and 1000 Hz (p < 0.01) using the accelerometer. In contrast, ultrasound detected 2-mm loosening at a frequency range of 850–1050 Hz (p < 0.01) and 4-mm loosening at 500–950 Hz (p < 0.01).
Original languageEnglish
Pages (from-to)739-745
Number of pages7
JournalMedical Engineering & Physics
Volume37
Issue number8
Early online date5 Jun 2015
DOIs
Publication statusPublished - Aug 2015

Fingerprint Dive into the research topics of 'Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements'. Together they form a unique fingerprint.

  • Profiles

    No photo of Tony Miles

    Tony Miles

    Person: Research & Teaching, Honorary / Visiting Staff

    Cite this