Abstract
Methods for the assessment of spatial variations in temporal trends (SVTT) are important tools for disease surveillance, which can help governments to formulate programs to prevent diseases, and measure the progress, impact, and efficacy of preventive efforts already in operation. The linear SVTT method is designed to detect areas with unusual different disease linear trends. In some situations, however, its estimation trend procedure can lead to wrong conclusions. In this article, the quadratic SVTT method is proposed as alternative of the linear SVTT method. The quadratic method provides better estimates of the real trends, and increases the power of detection in situations where the linear SVTT method fails. A performance comparison between the linear and quadratic methods is provided to help illustrate their respective properties. The quadratic method is applied to detect unusual different cervical cancer trends in white women in the United States, over the period 1969 to 1995.
Original language | English |
---|---|
Pages (from-to) | 1422-1437 |
Journal | Statistical Methods in Medical Research |
Volume | 25 |
Issue number | 4 |
Early online date | 23 Apr 2013 |
DOIs | |
Publication status | Published - 1 Aug 2016 |