Detailed investigation of overwash on a gravel barrier

Ana Matias, C.E. Blenkinsopp, Gerd Masselink

Research output: Contribution to journalArticle

13 Citations (Scopus)
124 Downloads (Pure)

Abstract

This paper uses results obtained from a prototype-scale experiment (Barrier Dynamics Experiment; BARDEX) undertaken in the Delta flume, the Netherlands, to investigate overwash hydraulics and morphodynamics of a prototype gravel barrier. Gravel barrier behaviour depends upon a number of factors, including sediment properties (porosity, permeability, grain-size) and wave climate. Since overwash processes are known to control short-term gravel barrier dynamics and long-term barrier migration, a detailed quantification of overwash flow properties and induced bed-changes is crucial. Overwash hydrodynamics of the prototype gravel barrier focused on the flow velocity, depth and discharge over the barrier crest, and the overwash flow progression across and the infiltration through the barrier. During the BARDEX experiment, overwash peak depth (0.77m), velocity (5ms) and discharge (max. 6mm) were high, especially considering the relatively modest wave energy (significant wave height=0.8m). Conversely to schemes found in the literature, average flow depth did not linearly decrease across the barrier; rather, it was characterised by a sudden decrease at the crest, a milder decrease at the barrier top and then propagation as a shallow water lens over the backbarrier. The barrier morphological evolution was analysed over a series of 15-min experimental runs and at the timescale of individual overwash events. Overall, the morphological variation did not result from an accumulation of many small consistently erosive or accretionary events, but rather the mean bed elevation change per event was quite large (10mm) and the overall morphology change occurred due to a small imbalance in the number of erosive and accretionary events at each location. Two relationships between overwash hydrodynamic variables were deduced from results: (1) between overwash flow depth and velocity a power-type relation was obtained; and (2) a linear relation was observed between overwash flow depth and maximum overwash intrusion distance across the barrier top (i.e. overwash intrusion). Findings from this study are useful to enhance the knowledge of overwash processes and also have practical applications. On the one hand, results shown here can be use for the validation of overwash predictive models, and additionally, the simple empirical relations deduced from the dataset can be used by coastal managers to estimate overwash intrusion distance, which in turn can assist in the location of areas under risk of overwash and breaching.
Original languageEnglish
Pages (from-to)27-38
Number of pages12
JournalMarine Geology
Volume350
DOIs
Publication statusPublished - 1 Apr 2014

Fingerprint

Gravel
gravel
Hydrodynamics
hydrodynamics
Experiments
wave climate
sediment property
Infiltration
Flow velocity
significant wave height
experiment
morphodynamics
Lenses
Sediments
wave energy
Managers
Porosity
flow velocity
Hydraulics
shallow water

Cite this

Detailed investigation of overwash on a gravel barrier. / Matias, Ana; Blenkinsopp, C.E.; Masselink, Gerd.

In: Marine Geology, Vol. 350, 01.04.2014, p. 27-38.

Research output: Contribution to journalArticle

Matias, Ana ; Blenkinsopp, C.E. ; Masselink, Gerd. / Detailed investigation of overwash on a gravel barrier. In: Marine Geology. 2014 ; Vol. 350. pp. 27-38.
@article{0e7fd7ff230e4e598f792f3f5ff1d8c4,
title = "Detailed investigation of overwash on a gravel barrier",
abstract = "This paper uses results obtained from a prototype-scale experiment (Barrier Dynamics Experiment; BARDEX) undertaken in the Delta flume, the Netherlands, to investigate overwash hydraulics and morphodynamics of a prototype gravel barrier. Gravel barrier behaviour depends upon a number of factors, including sediment properties (porosity, permeability, grain-size) and wave climate. Since overwash processes are known to control short-term gravel barrier dynamics and long-term barrier migration, a detailed quantification of overwash flow properties and induced bed-changes is crucial. Overwash hydrodynamics of the prototype gravel barrier focused on the flow velocity, depth and discharge over the barrier crest, and the overwash flow progression across and the infiltration through the barrier. During the BARDEX experiment, overwash peak depth (0.77m), velocity (5ms) and discharge (max. 6mm) were high, especially considering the relatively modest wave energy (significant wave height=0.8m). Conversely to schemes found in the literature, average flow depth did not linearly decrease across the barrier; rather, it was characterised by a sudden decrease at the crest, a milder decrease at the barrier top and then propagation as a shallow water lens over the backbarrier. The barrier morphological evolution was analysed over a series of 15-min experimental runs and at the timescale of individual overwash events. Overall, the morphological variation did not result from an accumulation of many small consistently erosive or accretionary events, but rather the mean bed elevation change per event was quite large (10mm) and the overall morphology change occurred due to a small imbalance in the number of erosive and accretionary events at each location. Two relationships between overwash hydrodynamic variables were deduced from results: (1) between overwash flow depth and velocity a power-type relation was obtained; and (2) a linear relation was observed between overwash flow depth and maximum overwash intrusion distance across the barrier top (i.e. overwash intrusion). Findings from this study are useful to enhance the knowledge of overwash processes and also have practical applications. On the one hand, results shown here can be use for the validation of overwash predictive models, and additionally, the simple empirical relations deduced from the dataset can be used by coastal managers to estimate overwash intrusion distance, which in turn can assist in the location of areas under risk of overwash and breaching.",
author = "Ana Matias and C.E. Blenkinsopp and Gerd Masselink",
year = "2014",
month = "4",
day = "1",
doi = "10.1016/j.margeo.2014.01.009",
language = "English",
volume = "350",
pages = "27--38",
journal = "Marine Geology",
issn = "0025-3227",
publisher = "Elsevier",

}

TY - JOUR

T1 - Detailed investigation of overwash on a gravel barrier

AU - Matias, Ana

AU - Blenkinsopp, C.E.

AU - Masselink, Gerd

PY - 2014/4/1

Y1 - 2014/4/1

N2 - This paper uses results obtained from a prototype-scale experiment (Barrier Dynamics Experiment; BARDEX) undertaken in the Delta flume, the Netherlands, to investigate overwash hydraulics and morphodynamics of a prototype gravel barrier. Gravel barrier behaviour depends upon a number of factors, including sediment properties (porosity, permeability, grain-size) and wave climate. Since overwash processes are known to control short-term gravel barrier dynamics and long-term barrier migration, a detailed quantification of overwash flow properties and induced bed-changes is crucial. Overwash hydrodynamics of the prototype gravel barrier focused on the flow velocity, depth and discharge over the barrier crest, and the overwash flow progression across and the infiltration through the barrier. During the BARDEX experiment, overwash peak depth (0.77m), velocity (5ms) and discharge (max. 6mm) were high, especially considering the relatively modest wave energy (significant wave height=0.8m). Conversely to schemes found in the literature, average flow depth did not linearly decrease across the barrier; rather, it was characterised by a sudden decrease at the crest, a milder decrease at the barrier top and then propagation as a shallow water lens over the backbarrier. The barrier morphological evolution was analysed over a series of 15-min experimental runs and at the timescale of individual overwash events. Overall, the morphological variation did not result from an accumulation of many small consistently erosive or accretionary events, but rather the mean bed elevation change per event was quite large (10mm) and the overall morphology change occurred due to a small imbalance in the number of erosive and accretionary events at each location. Two relationships between overwash hydrodynamic variables were deduced from results: (1) between overwash flow depth and velocity a power-type relation was obtained; and (2) a linear relation was observed between overwash flow depth and maximum overwash intrusion distance across the barrier top (i.e. overwash intrusion). Findings from this study are useful to enhance the knowledge of overwash processes and also have practical applications. On the one hand, results shown here can be use for the validation of overwash predictive models, and additionally, the simple empirical relations deduced from the dataset can be used by coastal managers to estimate overwash intrusion distance, which in turn can assist in the location of areas under risk of overwash and breaching.

AB - This paper uses results obtained from a prototype-scale experiment (Barrier Dynamics Experiment; BARDEX) undertaken in the Delta flume, the Netherlands, to investigate overwash hydraulics and morphodynamics of a prototype gravel barrier. Gravel barrier behaviour depends upon a number of factors, including sediment properties (porosity, permeability, grain-size) and wave climate. Since overwash processes are known to control short-term gravel barrier dynamics and long-term barrier migration, a detailed quantification of overwash flow properties and induced bed-changes is crucial. Overwash hydrodynamics of the prototype gravel barrier focused on the flow velocity, depth and discharge over the barrier crest, and the overwash flow progression across and the infiltration through the barrier. During the BARDEX experiment, overwash peak depth (0.77m), velocity (5ms) and discharge (max. 6mm) were high, especially considering the relatively modest wave energy (significant wave height=0.8m). Conversely to schemes found in the literature, average flow depth did not linearly decrease across the barrier; rather, it was characterised by a sudden decrease at the crest, a milder decrease at the barrier top and then propagation as a shallow water lens over the backbarrier. The barrier morphological evolution was analysed over a series of 15-min experimental runs and at the timescale of individual overwash events. Overall, the morphological variation did not result from an accumulation of many small consistently erosive or accretionary events, but rather the mean bed elevation change per event was quite large (10mm) and the overall morphology change occurred due to a small imbalance in the number of erosive and accretionary events at each location. Two relationships between overwash hydrodynamic variables were deduced from results: (1) between overwash flow depth and velocity a power-type relation was obtained; and (2) a linear relation was observed between overwash flow depth and maximum overwash intrusion distance across the barrier top (i.e. overwash intrusion). Findings from this study are useful to enhance the knowledge of overwash processes and also have practical applications. On the one hand, results shown here can be use for the validation of overwash predictive models, and additionally, the simple empirical relations deduced from the dataset can be used by coastal managers to estimate overwash intrusion distance, which in turn can assist in the location of areas under risk of overwash and breaching.

UR - http://www.scopus.com/inward/record.url?scp=84894070119&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1016/j.margeo.2014.01.009

U2 - 10.1016/j.margeo.2014.01.009

DO - 10.1016/j.margeo.2014.01.009

M3 - Article

AN - SCOPUS:84894070119

VL - 350

SP - 27

EP - 38

JO - Marine Geology

JF - Marine Geology

SN - 0025-3227

ER -