Designs for an adaptive tuned vibration absorber with variable shape stiffness element

P Bonello, M J Brennan, S J Elliott, J F V Vincent, G Jeronimidis

Research output: Contribution to journalArticlepeer-review

38 Citations (SciVal)


An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency., enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned-pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.
Original languageEnglish
Pages (from-to)3955-3976
Number of pages22
JournalProceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences
Issue number2064
Publication statusPublished - 2005


Dive into the research topics of 'Designs for an adaptive tuned vibration absorber with variable shape stiffness element'. Together they form a unique fingerprint.

Cite this