Projects per year
Abstract
Increasing numbers of electrically active porous framework materials are being reported, with conductivities that make them attractive for technological applications. As design strategies for efficient carrier transport emerge, the next challenge is to incorporate the materials into a functioning device. In thin-film devices interface effects are of critical importance to overall function. In this article we present a method to identify compatible materials combinations to achieve mechanically robust, electronically optimal pairings. The computational screening is based on a two-step procedure: (i) matching of lattice constants to ensure interfaces with minimal epitaxial strain and therefore maximal mechanical and chemical stability; (ii) matching of absolute electron energies to construct energy-band-alignment diagrams, which can be used to screen for particular electronic applications. We apply the methodology to search for zeolitic imidazolate framework (ZIF) type materials that are compatible with native metal electrodes. The procedure allows us to predict simple routes for electrochemical deposition of ZIFs for application as conductive porous electrodes.
Original language | English |
---|---|
Pages (from-to) | 213-225 |
Number of pages | 13 |
Journal | Faraday Discussions |
Volume | 201 |
DOIs | |
Publication status | Published - 1 Sept 2017 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
Fingerprint
Dive into the research topics of 'Designing porous electronic thin-film devices: Band offsets and heteroepitaxy'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Multi-Scale Modelling of Hybrid Perovskites for Solar Cells
Walsh, A. (PI)
Engineering and Physical Sciences Research Council
1/02/15 → 31/01/18
Project: Research council
Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility