Projects per year
Abstract
Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways.
Original language | English |
---|---|
Pages (from-to) | 35-51 |
Number of pages | 17 |
Journal | Messenger |
Volume | 3 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Jun 2015 |
Fingerprint
Dive into the research topics of 'Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Chemical Biology of Cellular Signalling using Polyphosphate Messengers
Potter, B. (PI)
1/01/14 → 31/12/18
Project: UK charity