Abstract
Different air systems such as turbochargers (TC), hybrid boosting, turbo compounding and exhaust gas recirculation (EGR) are increasingly used to improve the thermal efficiency of internal combustion engines (ICE). One dimensional (1D) gas dynamic codes supports their development and integration by modelling the engine and air systems and reducing testing time. However, this approach currently relies on steady flow characteristic maps which are inaccurate for simulating transient engine conditions. This is a key weakness of using gas-stand measured maps in engine simulations. Performing TC mapping on an engine would in principle solve this problem, however engine-based mapping is limited by the engine operating range and on these facilities, high-precision measurements are challenging. In addition, simple turbocharging can no longer be constrained to an individual TC supplying boost air to an engine. Instead, modern downsized engines require air-path system making use of multiple components including TCs, mechanical superchargers, electrically driven compressors (EDCs), EGR paths and control valves. Thus studying multiple air systems requires an experimental test facility to understand how they work in synergy. This is also useful in developing empirical models to minimize test time. Therefore the aim of this paper is to present a novel experimental facility that is flexibly designed for evaluating air systems individually and also at the system level representing a complicated air path both in steady and transient condition. The advanced test facility is built around a 2.2 l diesel engine to test the above air systems which can isolate the thermal and load transients from engine pulsating flows. Removing the flow pulsation allows study of the system characteristics in a steady state. Several examples of component and system level tests including a two-stage air path comprising of a VGT (variable geometry turbine) TC and a 48V EDC with typical operating condition (provided by 1D modeling) are discussed.
Original language | English |
---|---|
Title of host publication | Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development, Volume 2 |
Publisher | American Society of Mechanical Engineers (ASME) |
Pages | V002T07A004 |
Number of pages | 19 |
ISBN (Electronic) | 9780791851999 |
DOIs | |
Publication status | Published - 3 Jan 2019 |
Event | ASME 2018 Internal Combustion Engine Division Fall Technical Conference, ICEF 2018 - San Diego, USA United States Duration: 4 Nov 2018 → 7 Nov 2018 |
Conference
Conference | ASME 2018 Internal Combustion Engine Division Fall Technical Conference, ICEF 2018 |
---|---|
Country/Territory | USA United States |
City | San Diego |
Period | 4/11/18 → 7/11/18 |
Bibliographical note
Paper No. ICEF2018-9567Keywords
- Compressor characteristics
- Electrically driven compressor
- Engine gas stand
- HP EGR
- LP EGR
- Transient characteristics
- Turbine characteristics
- Turbocharging
ASJC Scopus subject areas
- Automotive Engineering
- Mechanical Engineering
- Fuel Technology