Abstract
Polymers with tailored architectures and degradability were prepared through thiocarbonyl addition ring-opening (TARO) atom-transfer radical polymerization (ATRP) using dibenzo[c,e]oxepin-5(7H)-thione (DOT), Cu(I)Br, and tris[2-(dimethylamino)ethyl]amine (Me6TREN) as the thionolactone, catalyst, and ligand, respectively, in combination with a selection of acrylic comonomers. Although copolymers with selectively degradable backbone thioesters and low dispersities (1.10 ≤ D ≤ 1.26) were achieved using DMSO, acetonitrile, or toluene as the solvent, the Cu(I)-catalyzed dethionation of DOT to its (oxo)lactone analogue limited the achievable copolymer DOT content. Using anhydrous polymerization conditions minimized the side reaction and provided degradable copolymers with a higher (≤32 mol %) thioester content. Water-soluble molecular brushes were prepared by grafting poly(ethylene glycol) methyl ether acrylate-DOT copolymers from a pre-made multi-ATRP initiator. Due to copolymerization kinetics, the thioesters were installed close to the junctions and enabled the fast (<1 min) cleavage of the arms from the core to give water-soluble products using 10 mM oxone.
Original language | English |
---|---|
Pages (from-to) | 7392-7400 |
Number of pages | 9 |
Journal | Macromolecules |
Volume | 55 |
Issue number | 17 |
Early online date | 25 Aug 2022 |
DOIs | |
Publication status | Published - 13 Sept 2022 |
Bibliographical note
No funders were acknowledged.ASJC Scopus subject areas
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry