TY - JOUR
T1 - Degeneration of A-infinity modules
AU - Jensen, Bernt Tore
AU - Madsen, Dag
AU - Su, Xiuping
PY - 2009/8
Y1 - 2009/8
N2 - In this paper we use A∞-modules to study the derived category
of a finite dimensional algebra over an algebraically closed field. We study
varieties parameterising A∞-modules. These varieties carry an action of an
algebraic group such that orbits correspond to quasi-isomorphism classes of
complexes in the derived category. We describe orbit closures in these varieties,
generalising a result of Zwara and Riedtmann for modules.
AB - In this paper we use A∞-modules to study the derived category
of a finite dimensional algebra over an algebraically closed field. We study
varieties parameterising A∞-modules. These varieties carry an action of an
algebraic group such that orbits correspond to quasi-isomorphism classes of
complexes in the derived category. We describe orbit closures in these varieties,
generalising a result of Zwara and Riedtmann for modules.
UR - http://www.scopus.com/inward/record.url?scp=77950637423&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1090/S0002-9947-09-04693-5
U2 - 10.1090/S0002-9947-09-04693-5
DO - 10.1090/S0002-9947-09-04693-5
M3 - Article
SN - 0002-9947
VL - 361
SP - 4125
EP - 4142
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 8
ER -