TY - JOUR
T1 - Day-ahead Scheduling for an Electric Vehicle PV-based Battery Swapping Station Considering the Dual Uncertainties
AU - Liu, Hong
AU - ZHANG, YUHAN
AU - Gu, Chenghong
AU - Ge, Shaoyun
AU - Li, Furong
PY - 2019/8/16
Y1 - 2019/8/16
N2 - A day-ahead economic scheduling method based on chance-constrained programming and probabilistic sequence operation is proposed in this paper for an electric vehicle (EV) battery swapping station (BSS), considering the dual uncertainties of swapping demand and photovoltaic (PV) generation. First of all, a BSS day-ahead scheduling model that can deal with the uncertainties is established by using the chance-constrained programming. The optimization objective is to minimize the cost of electricity purchased from the utility grid with the chance constraints of swapping demand satisfaction and the confidence level of the minimum cost. Then, the deterministic transformation of chance constraints is implemented based on probabilistic sequences of stochastic variables. Thereafter, the feasible solution space of the proposed model is determined based on the battery controllable load margin, and then the fast optimization method for the BSS day-ahead scheduling model is developed by combining the feasible solution space and genetic algorithm (GA). In order to evaluate the solution quality, a risk assessment method based on the probabilistic sequence for day-ahead scheduling solutions is proposed. Finally, the efficiency and applicability of the proposed method is verified through the comparative analysis on a PV-based BSS system. Results illustrate that the model can provides a more reasonable charging strategy for the BSS operators with different risk appetite.
AB - A day-ahead economic scheduling method based on chance-constrained programming and probabilistic sequence operation is proposed in this paper for an electric vehicle (EV) battery swapping station (BSS), considering the dual uncertainties of swapping demand and photovoltaic (PV) generation. First of all, a BSS day-ahead scheduling model that can deal with the uncertainties is established by using the chance-constrained programming. The optimization objective is to minimize the cost of electricity purchased from the utility grid with the chance constraints of swapping demand satisfaction and the confidence level of the minimum cost. Then, the deterministic transformation of chance constraints is implemented based on probabilistic sequences of stochastic variables. Thereafter, the feasible solution space of the proposed model is determined based on the battery controllable load margin, and then the fast optimization method for the BSS day-ahead scheduling model is developed by combining the feasible solution space and genetic algorithm (GA). In order to evaluate the solution quality, a risk assessment method based on the probabilistic sequence for day-ahead scheduling solutions is proposed. Finally, the efficiency and applicability of the proposed method is verified through the comparative analysis on a PV-based BSS system. Results illustrate that the model can provides a more reasonable charging strategy for the BSS operators with different risk appetite.
U2 - 10.1109/ACCESS.2019.2935774
DO - 10.1109/ACCESS.2019.2935774
M3 - Article
SN - 2169-3536
VL - 7
SP - 115625
EP - 115636
JO - IEEE Access
JF - IEEE Access
ER -