Crystal symmetry and the reversibility of martensitic transformations

K Bhattacharya, S Conti, G Zanzotto, Johannes Zimmer

Research output: Contribution to journalArticlepeer-review

309 Citations (SciVal)
513 Downloads (Pure)

Abstract

Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins(1,2). They are characterized by a rapid change of crystal structure, accompanied by the development of a rich microstructure. Martensitic transformations can be irreversible, as seen in steels upon quenching(1), or they can be reversible, such as those observed in shape-memory alloys(3,4). In the latter case, the microstructures formed on cooling are easily manipulated by loads and disappear upon reheating. Here, using mathematical theory and numerical simulation, we explain these sharp differences in behaviour on the basis of the change in crystal symmetry during the transition. We find that a necessary condition for reversibility is that the symmetry groups of the parent and product phases be included in a common finite symmetry group. In these cases, the energy barrier to lattice-invariant shear is generically higher than that pertaining to the phase change and, consequently, transformations of this type can occur with virtually no plasticity. Irreversibility is inevitable in all other martensitic transformations, where the energy barrier to plastic deformation (via lattice-invariant shears, as in twinning or slip) is no higher than the barrier to the phase change itself. Various experimental observations confirm the importance of the symmetry of the stable states in determining the macroscopic reversibility of martensitic transformations.
Original languageEnglish
Pages (from-to)55-59
Number of pages5
JournalNature
Volume428
Issue number6978
DOIs
Publication statusPublished - 4 Mar 2004

Bibliographical note

ID number: ISI:000189363800032

Fingerprint

Dive into the research topics of 'Crystal symmetry and the reversibility of martensitic transformations'. Together they form a unique fingerprint.

Cite this