Crystal structure of Onconase at 1.1 angstrom resolution - insights into substrate binding and collective motion

Daniel E Holloway, U P Singh, K Shogen, K Ravi Acharya

Research output: Contribution to journalArticlepeer-review

13 Citations (SciVal)


Onconase (R) (ONC) is an amphibian member of the pancreatic ribonuclease superfamily that is selectively toxic to tumor cells. It is a much less efficient enzyme than the archetypal ribonuclease A and, in an attempt to gain further insight, we report the first atomic resolution crystal structure of ONC, determined in complex with sulfate ions at 100 K. The electron density map is of a quality sufficient to reveal significant nonplanarity in several peptide bonds. The majority of active site residues are very well defined, with the exceptions being Lys31 from the catalytic triad and Lys33 from the B(1) subsite, which are relatively mobile but rigidify upon nucleotide binding. Cryocooling causes a compaction of the unit cell and the protein contained within. This is principally the result of an inward movement of one of the lobes of the enzyme (lobe 2), which also narrows the active site cleft. Binding a nucleotide in place of sulfate is associated with an approximately perpendicular movement of lobe 2 and has little further effect on the cleft width. Aspects of this deformation are present in the principal axes of anisotropy extracted from C(alpha) atomic displacement parameters, indicating its intrinsic nature. The three lowest-frequency modes of ONC motion predicted by an anisotropic network model are compaction/expansion variations in which lobe 2 is the prime mover. Two of these have high similarity to the cryocooling response and imply that the essential 'breathing' motion of ribonuclease A is conserved in ONC. Instead, shifts in conformational equilibria may contribute to the reduced ribonucleolytic activity of ONC.
Original languageEnglish
Pages (from-to)4136-4149
Number of pages14
JournalFEBS Journal
Issue number21
Publication statusPublished - Nov 2011


Dive into the research topics of 'Crystal structure of Onconase at 1.1 angstrom resolution - insights into substrate binding and collective motion'. Together they form a unique fingerprint.

Cite this