Projects per year
Abstract
We consider the activated random walk model on general vertextransitive graphs. A central question in this model is whether the critical density μ c for sustained activity is strictly between 0 and 1. It was known that μ c > 0 on Z d, d = 1, and that μ c < 1 on Z for small enough sleeping rate. We show that μ c → 0 as λ → 0 in all vertex-transitive transient graphs, implying that μ c < 1 for small enough sleeping rate. We also show that μ c < 1 for any sleeping rate in any vertex-transitive graph in which simple random walk has positive speed. Furthermore, we prove that μc > 0 in any vertex-transitive amenable graph, and that μ c ∞ (0, 1) for any sleeping rate on regular trees.
Original language | English |
---|---|
Pages (from-to) | 2190-2220 |
Number of pages | 31 |
Journal | Annals of Probability |
Volume | 46 |
Issue number | 4 |
Early online date | 30 Jun 2018 |
DOIs | |
Publication status | Published - 31 Jul 2018 |
Keywords
- Absorbing states phase transitions
- Interacting particle systems
- Random walks
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty
Fingerprint
Dive into the research topics of 'Critical density of activated random walks on transitive graphs'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Early Career Fellowship - Mathematical Analysis of Strongly Correlated Processes on Discrete Dynamic Structures
Stauffer, A. (PI)
Engineering and Physical Sciences Research Council
1/04/16 → 30/09/22
Project: Research council