Abstract

What is a useful skill hierarchy for an autonomous agent? We propose an answer based on the graphical structure of an agent's interaction with its environment. Our approach uses hierarchical graph partitioning to expose the structure of the graph at varying timescales, producing a skill hierarchy with multiple levels of abstraction. At each level of the hierarchy, skills move the agent between regions of the state space that are well connected within themselves but weakly connected to each other. We illustrate the utility of the proposed skill hierarchy in a wide variety of domains in the context of reinforcement learning.
Original languageEnglish
PublisherarXiv
Number of pages19
DOIs
Publication statusPublished - 16 Jun 2023

Bibliographical note

19 pages, 12 figures

Keywords

  • cs.LG
  • cs.AI

Fingerprint

Dive into the research topics of 'Creating Multi-Level Skill Hierarchies in Reinforcement Learning'. Together they form a unique fingerprint.

Cite this