4 Downloads (Pure)

Abstract

Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices.
Original languageEnglish
Pages (from-to)1-1
Number of pages11
JournalIEEE Transactions on Power Systems
Early online date14 Jan 2020
DOIs
Publication statusE-pub ahead of print - 14 Jan 2020

Cite this

@article{9cbcb4e18e934c55a47babe1da02a782,
title = "Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression",
abstract = "Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices.",
author = "Wangwei Kong and Kang Ma and Lurui Fang and Renjie Wei and Furong Li",
year = "2020",
month = "1",
day = "14",
doi = "10.1109/TPWRS.2020.2966601",
language = "English",
pages = "1--1",
journal = "IEEE Transactions on Power Systems",
issn = "0885-8950",
publisher = "IEEE",

}

TY - JOUR

T1 - Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression

AU - Kong, Wangwei

AU - Ma, Kang

AU - Fang, Lurui

AU - Wei, Renjie

AU - Li, Furong

PY - 2020/1/14

Y1 - 2020/1/14

N2 - Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices.

AB - Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices.

U2 - 10.1109/TPWRS.2020.2966601

DO - 10.1109/TPWRS.2020.2966601

M3 - Article

SP - 1

EP - 1

JO - IEEE Transactions on Power Systems

JF - IEEE Transactions on Power Systems

SN - 0885-8950

ER -