TY - JOUR
T1 - Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models
AU - Brentan, Bruno M.
AU - Meirelles, Gustavo
AU - Herrera, Manuel
AU - Luvizotto, E.
AU - Izquierdo, Joaquin
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Operational and economic aspects of water distribution make water demand forecasting paramount for water distribution systems (WDSs) management. However, water demand introduces high levels of uncertainty in WDS hydraulic models. As a result, there is growing interest in developing accurate methodologies for water demand forecasting. Several mathematical models can serve this purpose. One crucial aspect is the use of suitable predictive variables. The most used predictive variables involve weather and social aspects. To improve the interrelation knowledge between water demand and various predictive variables, this study applies three algorithms, namely, classical Principal Component Analysis (PCA) and machine learning powerful algorithms such as Self-Organizing Maps (SOMs) and Random Forest (RF). We show that these last algorithms help corroborate the results found by PCA, while they are able to unveil hidden features for PCA, due to their ability to cope with nonlinearities. This paper presents a correlation study of three district metered areas (DMAs) from Franca, a Brazilian city, exploring weather and social variables to improve the knowledge of residential demand for water. For the three DMAs, temperature, relative humidity, and hour of the day appear to be the most important predictive variables to build an accurate regression model.
AB - Operational and economic aspects of water distribution make water demand forecasting paramount for water distribution systems (WDSs) management. However, water demand introduces high levels of uncertainty in WDS hydraulic models. As a result, there is growing interest in developing accurate methodologies for water demand forecasting. Several mathematical models can serve this purpose. One crucial aspect is the use of suitable predictive variables. The most used predictive variables involve weather and social aspects. To improve the interrelation knowledge between water demand and various predictive variables, this study applies three algorithms, namely, classical Principal Component Analysis (PCA) and machine learning powerful algorithms such as Self-Organizing Maps (SOMs) and Random Forest (RF). We show that these last algorithms help corroborate the results found by PCA, while they are able to unveil hidden features for PCA, due to their ability to cope with nonlinearities. This paper presents a correlation study of three district metered areas (DMAs) from Franca, a Brazilian city, exploring weather and social variables to improve the knowledge of residential demand for water. For the three DMAs, temperature, relative humidity, and hour of the day appear to be the most important predictive variables to build an accurate regression model.
U2 - 10.1155/2017/6343625
DO - 10.1155/2017/6343625
M3 - Article
SN - 1024-123X
VL - 2017
SP - 1
EP - 10
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 6343625
ER -