Projects per year
Abstract
Oleaginous microalgae and yeast are of increasing interest as a renewable resource for single cell oils (SCOs). These have applications in fuels, feed and food products. In order to become cost competitive with existing terrestrial oils, a biorefinery approach is often taken where several product streams are valorised alongside the SCO. Whilst many life cycle assessment (LCA) and Techno-economic (TEA) studies have employed this biorefinery approach to SCO production, a systematic analysis of their implications is missing. This review evaluates the economic and environmental impacts associated with the use of coproducts. Overall, protein production plays the greatest role in determining viability, with coproduct strategy crucial to considering in the early stages of research and development.
Original language | English |
---|---|
Article number | 122862 |
Journal | Bioresource Technology |
Volume | 303 |
Early online date | 23 Jan 2020 |
DOIs | |
Publication status | Published - 1 May 2020 |
Keywords
- Bio-based products
- Biorefineries
- Life cycle assessment
- Single cell oils
- Techno-economic analysis
ASJC Scopus subject areas
- Bioengineering
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal
Fingerprint
Dive into the research topics of 'Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Integrated Energy Efficient Microwave and Unique Fermentation Processes for Pilot Scale Production of High Value Chemical from Lignocellulosic Waste
Chuck, C. (PI), Henk, D. (CoI), Leak, D. (CoI), McManus, M. (CoI) & Scott, R. (CoI)
Engineering and Physical Sciences Research Council
1/03/16 → 31/01/21
Project: Research council