TY - JOUR
T1 - Contributions of the non-kicking-side arm to rugby place-kicking technique
AU - Bezodis, Neil
AU - Trewartha, Grant
AU - Wilson, Cassie
AU - Irwin, Gareth
PY - 2007/5
Y1 - 2007/5
N2 - To investigate non-kicking-side arm motion during rugby place kicking, five experienced male kickers performed trials under two conditions, both with an accuracy requirement but one with an additional maximal distance demand. Joint centre coordinates were obtained at 120 Hz during kicking trials and a three-dimensional model was created to enable the determination of segmental contributions to whole-body angular momentum. All kickers possessed minimal non-kicking-side arm angular momentum about the global medio-lateral axis. The more accurate kickers exhibited greater non-kicking-side arm angular momentum about the global antero-posterior axis. This augmented the whole-body anteroposterior angular momentum, and altered the whole-body lateral lean at ball contact. The accurate kickers also exhibited greater non-kicking-side arm angular momentum about the global longitudinal axis, which opposed the kicking leg longitudinal angular momentum and attenuated the whole-body longitudinal angular momentum. All participants increased the longitudinal angular momentum of the non-kicking-side arm in the additional distance demand condition, except for one participant whose accuracy decreased, suggesting that the longitudinal angular momentum of the non-kicking-side arm assists maintenance of accuracy in maximum distance kicking. Goal kickers should be encouraged to produce non-kicking-side arm rotations about both the antero-posterior and longitudinal axes, as these appear important for both the initial achievement of accuracy, and for maintaining accuracy during distance kicking.
AB - To investigate non-kicking-side arm motion during rugby place kicking, five experienced male kickers performed trials under two conditions, both with an accuracy requirement but one with an additional maximal distance demand. Joint centre coordinates were obtained at 120 Hz during kicking trials and a three-dimensional model was created to enable the determination of segmental contributions to whole-body angular momentum. All kickers possessed minimal non-kicking-side arm angular momentum about the global medio-lateral axis. The more accurate kickers exhibited greater non-kicking-side arm angular momentum about the global antero-posterior axis. This augmented the whole-body anteroposterior angular momentum, and altered the whole-body lateral lean at ball contact. The accurate kickers also exhibited greater non-kicking-side arm angular momentum about the global longitudinal axis, which opposed the kicking leg longitudinal angular momentum and attenuated the whole-body longitudinal angular momentum. All participants increased the longitudinal angular momentum of the non-kicking-side arm in the additional distance demand condition, except for one participant whose accuracy decreased, suggesting that the longitudinal angular momentum of the non-kicking-side arm assists maintenance of accuracy in maximum distance kicking. Goal kickers should be encouraged to produce non-kicking-side arm rotations about both the antero-posterior and longitudinal axes, as these appear important for both the initial achievement of accuracy, and for maintaining accuracy during distance kicking.
UR - http://dx.doi.org/10.1080/14763140701324487
U2 - 10.1080/14763140701324487
DO - 10.1080/14763140701324487
M3 - Article
SN - 1476-3141
VL - 6
SP - 171
EP - 186
JO - Sports Biomechanics
JF - Sports Biomechanics
IS - 2
ER -