Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier

Ulrich Hintermair, Zenxing Gong, Ana Serbanovic, Mark J. Muldoon, Catherine C. Santini, David J. Cole-Hamilton

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)2(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)−1) of 500 h−1 at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.
Original languageEnglish
Pages (from-to)8501-8510
Number of pages10
JournalDalton Transactions
Volume39
Issue number36
Early online date1 Jun 2010
DOIs
Publication statusPublished - 28 Sep 2010

Fingerprint

Hydroformylation
Ionic Liquids
Carbon Dioxide
Catalysts
Reaction rates
Leaching
Substrates
Film thickness
Liquids
Diffusion in gases
Catalyst selectivity
Alkenes
Phase behavior
Carbon Monoxide
Silicon Dioxide
Design of experiments
Organic solvents
Catalysis
Gases
Viscosity

Cite this

Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier. / Hintermair, Ulrich; Gong, Zenxing; Serbanovic, Ana; Muldoon, Mark J.; Santini, Catherine C.; Cole-Hamilton, David J.

In: Dalton Transactions, Vol. 39, No. 36, 28.09.2010, p. 8501-8510.

Research output: Contribution to journalArticle

Hintermair, Ulrich ; Gong, Zenxing ; Serbanovic, Ana ; Muldoon, Mark J. ; Santini, Catherine C. ; Cole-Hamilton, David J. / Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier. In: Dalton Transactions. 2010 ; Vol. 39, No. 36. pp. 8501-8510.
@article{cc07d03823814e06a59f4005fb9cdcc7,
title = "Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier",
abstract = "A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)2(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)−1) of 500 h−1 at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.",
author = "Ulrich Hintermair and Zenxing Gong and Ana Serbanovic and Muldoon, {Mark J.} and Santini, {Catherine C.} and Cole-Hamilton, {David J.}",
year = "2010",
month = "9",
day = "28",
doi = "10.1039/c000687d",
language = "English",
volume = "39",
pages = "8501--8510",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "36",

}

TY - JOUR

T1 - Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier

AU - Hintermair, Ulrich

AU - Gong, Zenxing

AU - Serbanovic, Ana

AU - Muldoon, Mark J.

AU - Santini, Catherine C.

AU - Cole-Hamilton, David J.

PY - 2010/9/28

Y1 - 2010/9/28

N2 - A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)2(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)−1) of 500 h−1 at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

AB - A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)2(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)−1) of 500 h−1 at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

UR - http://www.scopus.com/inward/record.url?scp=77956311190&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1039/c000687d

U2 - 10.1039/c000687d

DO - 10.1039/c000687d

M3 - Article

VL - 39

SP - 8501

EP - 8510

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 36

ER -