Contact resistance of screen printed ag-contacts to si emitters: Mathematical modeling and microstructural characterization

Ann Mari Svensson, Sara Olibet, Dominik Rudolph, Enrique Cabrera, Jesper Friis, Keith Butler, John Harding

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)


The paper presents a detailed model of the contacting interface of c-Si solar cells. A finite 3D element model is used as a framework to determine the contact resistivity of the front contacts. It is based on detailed microstructural characterization of experimental geometries and further parameters obtained from quantum mechanical calculations. It includes experimentally obtained emitter doping profiles, corresponding to sheet resistances of 50, 60, 65 and 95 Ohm sq, the microscopic contact resistivities based on ab initio calculated Schottky barriers, as well as the conductivity of the emitter layer, including effect of local variations related to the doping profiles. The typical size and shape of the Ag crystallites is accounted for, and also the presence of a glass phase. The model results agrees very well with experimental results of the contact resistivity obtained at various temperatures, and to measurements performed after selective removal of layers in the front contact, and is thus able to quantify the impact of the various microstructural features. The model is used to consider the effects of emitter layer etching, which commonly occurs during fabrication processes, providing insight and direction for future development of large scale processing and manufacture of c-Si photovoltaics.

Original languageEnglish
Pages (from-to)E3180-E3187
JournalJournal of the Electrochemical Society
Issue number8
Publication statusPublished - 2014

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Materials Chemistry
  • Electrochemistry


Dive into the research topics of 'Contact resistance of screen printed ag-contacts to si emitters: Mathematical modeling and microstructural characterization'. Together they form a unique fingerprint.

Cite this