Abstract
We consider the optimization of complex performance metrics in multi-label classification under the population utility framework. We mainly focus on metrics linearly decomposable into a sum of binary classification utilities applied separately to each label with an additional requirement of exactly k labels predicted for each instance. These “macro-at-k” metrics possess desired properties for extreme classification problems with long tail labels. Unfortunately, the at-k constraint couples the otherwise independent binary classification tasks, leading to a much more challenging optimization problem than standard macro-averages. We provide a statistical framework to study this problem, prove the existence and the form of the optimal classifier, and propose a statistically consistent and practical learning algorithm based on the Frank-Wolfe method. Interestingly, our main results concern even more general metrics being non-linear functions of label-wise confusion matrices. Empirical results provide evidence for the competitive performance of the proposed approach.
Original language | English |
---|---|
Publication status | Published - 11 May 2024 |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria Duration: 7 May 2024 → 11 May 2024 |
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Hybrid, Vienna |
Period | 7/05/24 → 11/05/24 |
Bibliographical note
Publisher Copyright:© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.
ASJC Scopus subject areas
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language