Projects per year
Abstract
[Co(bdc)(DMF)] (Co-MOF-71 bdc = 1,4-benzenedicarboxylate DMF = N,N-dimethylformamide) has been previously reported to be a suitable supercapacitor material in spite of being electrically insulating and redox silent. The phenomenon can be explained due to a facile surface hydrolysis of Co-MOF-71 microcrystals in alkaline aqueous media via “conformal” transformation into a porous cobalt hydroxide. The resulting volume decrease during transformation of the MOF precursor (without a significant change in shape) is beneficial and ensures formation of a more active porous cobalt hydroxide product with high pseudo capacitance and electrocatalytic activity. The high “molecular scale porosity” of the MOF precursor offers benefits due to conformal transformation into products with high “nano-scale porosity”.
Original language | English |
---|---|
Pages (from-to) | 9-13 |
Number of pages | 5 |
Journal | Electrochemistry Communications |
Volume | 27 |
DOIs | |
Publication status | Published - 1 Feb 2013 |
Fingerprint
Dive into the research topics of 'Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Nano-Integration of Metal-Organic Frameworks and Catalysis for the Uptake and Utilisation of CO2
Marken, F. (PI), Burrows, A. (CoI), Cameron, P. (CoI), Edler, K. (CoI), Hammond, G. (CoI), Jones, M. (CoI), Mattia, D. (CoI), McManus, M. (CoI), Pascu, S. (CoI), Plucinski, P. (CoI) & Raithby, P. (CoI)
Engineering and Physical Sciences Research Council
1/05/10 → 14/02/14
Project: Research council