Computational modelling of convective heat transfer in a simulated engine cooling gallery

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Experimental data from internal combustion (IC) engines suggests that the use of proprietary computational fluid dynamics (CFD) codes for the prediction of coolant-side heat transfer within IC engine coolant jackets often results in underprediction of the convective heat transfer coefficient. An experimental and computational study, based on a coolant gallery simulator rig designed specifically to reproduce realistic IC engine operating conditions, has been conducted to explore this issue. It is shown that the standard 'wall function' approach normally used in CFD models to model near-wall conditions does not adequately represent some features of the flow that are relevant in convective heat transfer. Alternative modelling approaches are explored to account for these shortcomings and an empirical approach is shown to be successful; however, the methodology is not easily transferable to other situations. © IMechE 2007.
Original languageEnglish
Pages (from-to)1147-1157
Number of pages11
JournalProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Volume221
Issue number9
DOIs
Publication statusPublished - 2007

Keywords

  • Computational fluid dynamics
  • Ignition
  • Computational methods
  • Coolants
  • Internal combustion engines
  • Heat transfer

Fingerprint Dive into the research topics of 'Computational modelling of convective heat transfer in a simulated engine cooling gallery'. Together they form a unique fingerprint.

Cite this