Comparison of dynamic cobble berm revetments with differing gravel characteristics

Ollie Foss, Chris Blenkinsopp, Paul, Maxime Bayle, Kévin Martins, Stefan Schimmels, Luís Pedro Almeida

Research output: Contribution to journalArticlepeer-review


Pressure on the coastline is escalating due to the impacts of climate change, this is leading to a rise in sea-levels and intensifying storminess. Consequently, many regions of the coast are at increased risk of erosion and flooding. Therefore coastal protection schemes will increase in cost and scale. In response there is a growing use of nature-based coastal protection which aim to be sustainable, effective and adaptable. An example of a nature-based solution is a dynamic cobble berm revetment: a berm constructed from cobble and other gravel sediments at the high tide wave runup limit. These structures limit wave excursion protecting the hinterland from inundation, stabilise the upper beach and adapt to changes in water level. Recent experiments and field applications have shown the suitability of these structures for coastal protection, however many of the processes and design considerations are poorly understood. This study directly compares two prototype scale laboratory experiments which tested dynamic cobble berm revetments constructed with approximately the same geometry but differing gravel characteristics; well-sorted rounded gravel (DynaRev1) and poorly-sorted angular gravel (DynaRev2). In both cases the structures were tested using identical wave forcing including incrementally increasing water level and erosive wave conditions. The results presented in this paper demonstrate that both designs responded to changing water level and wave conditions by approaching a dynamically stable state, where individual gravel is mobilised under wave action but the geometry remains approximately constant. Further, both structures acted to reduce swash excursions compared to a pure sand beach. However, their morphological behaviour is response to wave action varied considerably. Once overtopping of the designed crest occurred, the poorly-sorted revetment developed a peaked crest which grew in elevation as the water level or wave height increased, further limited overtopping. By comparison, the well-sorted revetment was characterised by a larger volume of submerged gravel and a lower elevation flat crest which responded less well to changes in conditions. This occurred due to two processes: (1) for the poorly-sorted case, gravel sorting processes moved small to medium gravel material (D 50<70mm) to the crest and (2) the angular nature of the poorly-sorted gravel material promoted increased interlocking. Both of these processes led to a gravel matrix that is more resistant to wave action and gravitational effects. Both revetments experienced some sinking due to sand erosion beneath the front slope. The rate of sinking for the well-sorted case was larger and continued throughout due to the large pore spaces within the gravel matrix. For the poorly sorted revetment in DynaRev2, sand erosion ceased after approximately 28 h due to the development of a filter layer of small gravel at the sand-gravel interface reducing porosity at this location, hence a larger volume of sand was preserved beneath the structure. Both designs present a low-cost and effective solution for protecting sandy coastlines but from an engineering viewpoint it appears better to avoid well-sorted gravel material and greater gravel angularity has been seen to increase crest stability.

Original languageEnglish
Article number104312
JournalCoastal Engineering
Early online date21 Apr 2023
Publication statusE-pub ahead of print - 21 Apr 2023


  • Coastal adaption
  • DynaRev
  • Dynamic cobble berm revetment
  • Dynamic revetment
  • Gravel characteristics
  • Nature based solutions

ASJC Scopus subject areas

  • Ocean Engineering
  • Environmental Engineering


Dive into the research topics of 'Comparison of dynamic cobble berm revetments with differing gravel characteristics'. Together they form a unique fingerprint.

Cite this